ZASSENHAUS' LEMMA ON SECTORIAL NORM-DISTANCES ${ }^{1}$

BY
Norman Oler

1. Introduction

A norm-distance on the Euclidean space, E_{n}, is a function, say F, from $E_{n} \times E_{n}$ to the reals having the properties that for any points P and Q in E_{n} :
(i) $F(P, Q) \geq 0$.
(ii) $F(P, Q)=F(Q, P)$.
(iii) $\quad F(P+\bar{a}, Q+\bar{a})=F(P, Q)$ where \bar{a} is any vector in R_{n} and $P+\bar{a}$, $Q+\bar{a}$ denote respectively the points to which P and Q are translated by \bar{a}.
(iv) $F(P, X)+F(X, Q)=F(P, Q)$ where X is any point of the segment $P Q$.

The translation invariance expressed in (iii) implies that $F(P+\bar{a}, P)$ is independent of P so that $F(P+\bar{a}, P)=f(\bar{a})$ defines a non-negative realvalued function, f, on $R_{n} . \quad f(\bar{a})$ is called the norm-length of the vector \bar{a}. (See for example Cassels [1, Chapter IV].)

In view of (iv), f has the property that

$$
f(t \bar{a})=|t| f(\bar{a})
$$

for any real t.
The gauge body of F at P, P a point of E_{n}, is the set,

$$
B(P, F)=\left\{X \mid X \text { in } E_{n}, F(P, X) \leq 1\right\}
$$

It is a star set having P as center of symmetry. If P is an interior point then $B(P, F)$ is called a star body.

In E_{2} a packing with respect to F, in the sense of Minkowski-Hlawaka, consists of a finite set of points, E, which is admisible with respect to F (i.e. $F(P, Q) \geq 1$ for any two points P and Q of E) and a Jordan polygon, Π, the vertices of which belong to E and which contains the remaining points of E, if any, in its interior. Such a pair, ($\Pi, E)$, will also be called an F-distribution.

The term "sectorial norm-distance" has been introduced by Zassenhaus [2] to describe a norm-distance, F, which has the following special property: The complement of $B(0, F)$ consists of a finite and, because of (ii), an even number of disjoint open convex sets $K_{1}, \cdots, K_{2 r}$; each K_{i} is contained in a sector (i.e. a cone with vertex 0$) S_{i}$ of $E_{n}(i=1, \cdots, 2 r)$; int $S_{i} \cap \operatorname{int} S_{j}=\emptyset$ if $i \neq j$; $\cup S_{i}=E_{n}$.

A vector \bar{a} is said to belong to the sector S_{i} if $0+\bar{a}$ is in S_{i}.
A sectorial norm-distance is non-degenerate if and only if $r>1$. That $r>1$ will always be assumed in what follows.

In E_{2} a sectorial norm-distance gives rise to a classification of triangles into

[^0]
[^0]: Received January 17, 1964.
 ${ }^{1}$ Supported by the National Science Foundation.

