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Introduction

Let K be a field of algebraic functions of one variable over a field/c. Only
those subdomMns R of K which properly contain k are considered.
A preliminary result on quotient rings with respect to a multiplicative

system is applied to the particular case that K is of genus zero to determine
the conditions under which a given integrally closed subdomMn of K is a
quotient ring of a selected ring of a particularly simple type. This, in con-
nection with a criterion that R be a unique factorization domain, yields a
description of all subdomMns of K which are unique factorization domains.
The restriction on the genus of K removed, it is shown that under suitable
conditions if R is a unique factorization domain or possesses certain kinds of
prime elements, then K is of genus zero.
The author wishes to express his appreciation to Professor Abraham
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1. Preliminaries

If K is a field of algebraic functions of one variable over a field/c, it shall
always be assumed that/ is algebraically closed in K.
The definitions of place, valuation, zero, pole, divisor, and related terms

are those of ChevMley [1]. Note, in particular, that a place is the ideal of
non-units of a valuation ring.
A Krull domain is an integral domain R with unity such that there exists

a family V of valuations of the quotient field F of R which are discrete and of
rank 1, and such that R is the intersection of all valuation rings of valuations
of V, and every nonzero element of F has zero value in all but a finite number
of valuations of V. V is called a definition family of R. A valuation v in V
is essential if there is an element x in F such that v(x) is negative, but x has
nonnegative value in every other valuation of V. The basic facts about
Krull domains are to be found in Samuel [2], where they are called "normal"
rings.
A Dedekind domain is a Krull domain in which every nontriviM prime ideal

is minimal. Occasionally, for expository purposes, a domain, instead of be-
ing called simply a Dedekind domain, will be referred to as both a Krull
and Dedekind domain.
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