LIE ALGEBRAS WITH SUBALGEBRAS OF CO-DIMENSION ONE

BY

KARL HEINRICH HOFMANN

In the study of Lie groups of dimension n acting on a space and having a 1-dimensional orbit—and in particular in the study of the boundary of certain topological semigroups on manifolds with boundary—the following problem arises: If G is an n-dimensional connected Lie group and H a closed (n - 1)-dimensional subgroup, is there a one-parameter group E such that G = HE and no conjugate of E is contained in H? If so, "how many" such one-parameter groups exist? We shall give a complete answer to this question. In order to do so we classify the n-dimensional real Lie algebras possessing a subalgebra of dimension n - 1 (Theorem I). Thus we establish the fact that the Lie algebra of G contains at least n - 1 linearly independent vectors such that no conjugate of a one-parameter group generated by one of these is ever contained in H; in many cases there are even n linearly independent vectors with this property.

In order to make the proof fairly self contained we first deal with simple Lie algebras; the results so obtained may also be produced by a close inspection of the classification of simple Lie algebras.

LEMMA 1. Let \mathfrak{G} be a compact simple Lie algebra over an ordered field. Suppose that dim $\mathfrak{G} = n$ and that \mathfrak{F} is a subalgebra of dimension n - d. Then $2n \leq d(d + 1)$.

Proof. Since usually the term of a compact Lie algebra is applied to real Lie algebras we first remark, that under a compact Lie algebra over an ordered field we understand a Lie algebra whose Killing form is negative definite. Now we let \mathfrak{B} be an orthogonal complement of \mathfrak{F} in \mathfrak{G} with respect to the Killing form. Then dim $\mathfrak{B} = d$. Preserving the Killing form on \mathfrak{G} under the adjoint action, \mathfrak{F} is represented in the Lie algebra of the orthogonal group $O(\mathfrak{B})$ on \mathfrak{B} . Let \mathfrak{R} be the kernel of this representation. Then

$$[\Re, \Im] = [\Re, \Im] + [\Re, \Im]$$

which is in \mathfrak{R} because the first summand vanishes and \mathfrak{R} is an ideal in \mathfrak{H} . This shows that \mathfrak{R} is an ideal of \mathfrak{G} . Since \mathfrak{G} is simple we have $\mathfrak{R} = 0$; so $n - d = \dim \mathfrak{H} \leq \dim O(\mathfrak{B}) = d(d-1)/2$. Consequently $2n \leq d(d-1)$.

It may be remarked that equality holds if \mathfrak{G} is the Lie algebra of SO(m) and \mathfrak{F} is the Lie algebra of the subgroup SO(m-1).

LEMMA 2. Let \mathfrak{G} be a real simple n-dimensional Lie algebra and \mathfrak{F} a subalgebra of dimension n-1. Then dim $\mathfrak{G} = 3$ and $\mathfrak{G} \cong \mathfrak{sl}(2)$, the Lie algebra of $\mathfrak{Sl}(2)$.

Received April 23, 1964.