REMARKS ON NONLINEAR FUNCTIONAL EQUATIONS, III

BY

FELIX E. BROWDER¹

Introduction

In two preceding papers under the same title [2], [3], the writer has studied nonlinear functional equations in reflexive complex Banach spaces involving operators T mapping such a Banach space X into its dual X^* and satisfying inequalities of the type

(1)
$$|(Tu - Tv, u - v)| \ge k(u, v)h(||u - v||)$$

where (w, v) denotes the pairing between w of X^* and v of X.

A representative result of this type is Theorem 1 of [2] which asserts that if T is demicontinuous and saeisfies the two conditions:

(i) There exists a real function c(r) on \mathbb{R}^1 with $c(r) \to +\infty$ as $r \to +\infty$ such that for all u of X,

(2)
$$|(Tu, u)| \ge c(||u||)||u||$$

(ii) For each N > 0, there exists a continuous strictly increasing real function $k_N(r)$ on R^1 with $k_N(0) = 0$ such that for $||u|| \le N$, $||v|| \le N$

(3)
$$|(Tu - Tv, u - v)| \ge k_N(||u - v||)||u - v||;$$

then T maps X onto X^* .

This theorem is an extension and generalization of a theorem of Zarantonello [7] which asserts that if T is a continuous map of a Hilbert space H into H which carries bounded sets into bounded sets and such that for a suitable constant c > 0

$$|(Tu - Tv, u - v)| \ge c ||u - v||^2$$

then T maps H onto H.

Further extensions were given by the writer in [3] in which on the one hand the inequality (3) of (ii) was modified to

(4)
$$|(Tu - Tv, u - v)| \geq k_N(||u - v||) - |(C_N u - C_N v, u - v)|$$

where for each N > 0, C_N is some completely continuous map of X into X^* , and on the other, the demicontinuity of T was replaced by the condition that T = L + G where G is demicontinuous and maps bounded sets of X into bounded sets of X^* while L is a closed densely defined linear map of X into X^* such that its adjoint L^* is the closure of its restriction to $D(L) \cap D(L^*)$.

Received April 23, 1964.

¹ This research was supported in part by the Sloan Foundation, by the National Science Foundation, and by the Army Research Office (Durham).