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1. Introduction
Let C, be the set of n degree cosine polynomials g such that if

g() a0 a cos -t- -[- a cos n,
then g() -> 0 for all real 6, a > a0 > 0, and a -> 0 for k 2, 3, n.
The estimates for the errors in approximate formulas obtained for various
functions of prime numbers depend on the following two quotients formed
from the coefficients of members of C,

R R(g) a -t- a. -t-" -4-" a,,

v%)

S S(g) ao "4- a -t- -4- a,,.
al ao

Following standard notation, we denote by r(x) the number of primes
less than or equal to x. For v(x), Landau [5, vol. 1, pp. 242-251] established
the validity of the following approximation for all X > S + 2:

dy (xe-(o) xr(x)
log Y d- 0 ).

By more sophisticated arguments Landau [5, vol. 1, pp. 321-333] also showed
that for any p > R we have

r(x) f dy
-4- O(x (log x)-l/2e-./iogx)

log y

The last estimate for the error for large x depends on the following result
concerning the zeros of the Riemann zeta-function ’(s). If a > R, there
exists a positive number 3’0 depending on a such that if + iy is a zero of
’(s) with , => 3’0, then < 1 1/(a log 3’). From these results it can be
seen that the estimates for the error are decreased if S and R are made smaller.
The problem involving S has been treated by Landau, Tschakaloff and van

der Waerden. Denoting the g.l.b, of S(g) for g e C by P, the best results
can be summarized as follows. Tschakaloff [8] proved that P 7, P P
P 6, Ps 5.92983 and P Ps Ps 5.90529 he gave another
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