ON A CONJECTURE OF ERDÖS AND RÉNYI

BY
R. J. Miech

Let G be a finite Abelian group of order n, a_{1}, \cdots, a_{k} be a sequence of elements of G, and let

$$
B=B\left(a_{1}, \cdots, a_{k}\right)=\left\{\varepsilon_{1} a_{1}+\cdots+\varepsilon_{k} a_{k}: \varepsilon_{i}=0 \text { or } 1, i=1, \cdots k\right\}
$$

Note that if $B=G$ then we must have $k \geq(\log n) / \log 2$. In a recent paper [1] Erdös and Rényi raised the question: how large must k be in order that every element b of G have approximately the same number of representations of the form

$$
b=c_{1} a_{1}+\cdots+\varepsilon_{k} a_{k}
$$

for nearly every sequence a_{1}, \cdots, a_{k} of G ? In other words, how large must k be in order that nearly every sequence a_{1}, \cdots, a_{k} of G will generate G in a uniform fashion? They proved that any k such that

$$
k \geq(2 \log n+c) / \log 2
$$

where c is a certain constant, is sufficient and they conjectured that the coefficient of $\log n$ in this inequality, 2 , could not be replaced by anything better. The purpose of this paper is to show that the 2 can be replaced by $\frac{3}{2}$ for most groups and that the conjecture, if it is true, is valid only for groups of a particular nature.

Several definitions are needed before precise results can be stated. Let G_{k} be the Cartesian product of k copies of G, let P be the probability measure on G_{k} whose value at each point of G_{k} is n^{-k}, and let, for each b in $G, V_{k}(b)$ be the random variable whose value at each point $(a)=\left(a_{1}, \cdots, a_{k}\right)$ of G_{k} is given by

$$
V_{k}(b,(a))=N\left\{\left(\varepsilon_{1}, \cdots, \varepsilon_{k}\right): \varepsilon_{1} a_{1}+\cdots+\varepsilon_{k} a_{k}=b\right\}
$$

where $N\{\mathfrak{U}\}$ is the number of elements in the set \mathfrak{u}. Suppose, furthermore, that if G is expressed as a direct sum of cyclic groups of prime power order then r of the summands have orders that are powers of 2 . Then we have the

Theorem. Let G be a finite Abelian group of order n and let $P, V_{k}(b)$, and r be defined as above. Let ε and δ be any fixed positive numbers. Then if k is any integer such that

$$
k \geq\left(\max \left\{\frac{3}{2} \log n, \log n+r \log 2\right\}+4 \log \frac{1}{\epsilon}+\log \right) \frac{1}{\log 2}+8
$$

Received December 9, 1965.

