WIENER'S TESTS FOR ATOMIC MARKOV CHAINS¹

BY

B. H. MURDOCH

1. Introduction

In a paper of Itô and McKean [1] a criterion, known as Wiener's test, is obtained for deciding whether a set of states in the simple d-dimensional random walk will be visited finitely often with probability 0 or 1. Lamperti has shown [2] that a similar test is valid for a class of Markov chains which includes all d-dimensional random walks with zero means and finite second moments.

In this paper we obtain necessary and sufficient conditions for the existence of Wiener-type tests in arbitrary discrete parameter Markov chains with stationary transition probabilities.

We follow closely the terminology of Chung [3]. The state space I is taken as the set of positive integers. $P = (p_{ij}) (i, j \in I)$ is the matrix of (one-step) transition probabilities, its n^{th} power $P^n = (p_{ij}^{(n)})$ is then the matrix of n-step transition probabilities. Ω is the set of infinite sequences $\omega = (i_0, i_1, \cdots)$ with $i_t \in I$ $(t \ge 0)$. The probability measure $\Pr(\cdot)$ on Ω is fully determined once the initial probability distribution of states i_0 is known, $p_i = \Pr(i_0 = j)$. Usually we will only be interested in conditional probabilities $Pr(\cdot | i_0 = j)$ where the initial state is fixed. The successive states of a sample path are labelled x_0 , x_1 , \cdots and we say that the Markov chain is in state *i* at time *n* if $x_n = i$. For any element $\omega = (i_0, i_1, \cdots)$ of Ω we write $x_n(\omega) = i_n$.

We define the Green's function of the chain

(1.1)
$$G_{ij} = \sum_{n=0}^{\infty} p_{ij}^{(n)}$$

where for convenience we put $p_{ij}^{(0)} = \delta_{ij}$. If G_{ii} is finite we say that the state i is transient, otherwise it is recurrent. The set R of recurrent states of I can be divided into disjoint recurrent classes $R_u = \{i : G_{ui} > 0\}$ corresponding to certain recurrent states u.

For any set of states A we define the functions

(1.2)
$$f_m(i, A) = \Pr(x_n(\omega) \epsilon A \text{ for at least } m \text{ values of } n \mid x_0(\omega) = i)$$

(1.3) $h(i, A) = f_{\infty}(i, A)$
 $= \lim_{m \to \infty} f_m(i, A) = \Pr(x_n(\omega) \epsilon A \text{ infinitely often } \mid x_0(\omega) = i)$
(1.4) $e_m(i, A) = f_m(i, A) - f_{m+1}(i, A)$
 $= \Pr(x_n(\omega) \epsilon A \text{ exactly } m \text{ times } \mid x_0(\omega) = i).$

Received November 8, 1966.

¹ This research was supported in part by a U.S. Army contract.