WIENER'S TESTS FOR ATOMIC MARKOV CHAINS ${ }^{1}$

BY
B. H. Murdoch

1. Introduction

In a paper of Itô and McKean [1] a criterion, known as Wiener's test, is obtained for deciding whether a set of states in the simple d-dimensional random walk will be visited finitely often with probability 0 or 1 . Lamperti has shown [2] that a similar test is valid for a class of Markov chains which includes all d-dimensional random walks with zero means and finite second moments.

In this paper we obtain necessary and sufficient conditions for the existence of Wiener-type tests in arbitrary discrete parameter Markov chains with stationary transition probabilities.

We follow closely the terminology of Chung [3]. The state space I is taken as the set of positive integers. $P=\left(p_{i j}\right)(i, j \epsilon I)$ is the matrix of (one-step) transition probabilities, its $n^{\text {th }}$ power $P^{n}=\left(p_{i j}^{(n)}\right)$ is then the matrix of n-step transition probabilities. Ω is the set of infinite sequences $\omega=\left(i_{0}, i_{1}, \cdots\right)$ with $i_{t} \in I(t \geq 0)$. The probability measure $\operatorname{Pr}(\cdot)$ on Ω is fully determined once the initial probability distribution of states i_{0} is known, $p_{j}=\operatorname{Pr}\left(i_{0}=j\right)$. Usually we will only be interested in conditional probabilities $\operatorname{Pr}\left(\cdot \mid i_{0}=j\right)$ where the initial state is fixed. The successive states of a sample path are labelled x_{0}, x_{1}, \cdots and we say that the Markov chain is in state i at time n if $x_{n}=i$. For any element $\omega=\left(i_{0}, i_{1}, \cdots\right)$ of Ω we write $x_{n}(\omega)=i_{n}$.

We define the Green's function of the chain

$$
\begin{equation*}
G_{i j}=\sum_{n=0}^{\infty} p_{i j}^{(n)} \tag{1.1}
\end{equation*}
$$

where for convenience we put $p_{i j}^{(0)}=\delta_{i j}$. If $G_{i i}$ is finite we say that the state i is transient, otherwise it is recurrent. The set R of recurrent states of I can be divided into disjoint recurrent classes $R_{u}=\left\{i: G_{u i}>0\right\}$ corresponding to certain recurrent states u.

For any set of states A we define the functions

$$
\begin{align*}
& f_{m}(i, A)=\operatorname{Pr}\left(x_{n}(\omega) \epsilon A \quad \text { for at least } m \text { values of } n \mid x_{0}(\omega)=i\right) \tag{1.2}\\
& h(i, A)=f_{\infty}(i, A) \tag{1.3}\\
& \quad=\lim _{m \rightarrow \infty} f_{m}(i, A)=\operatorname{Pr}\left(x_{n}(\omega) \epsilon A \quad \text { infinitely often } \mid x_{0}(\omega)=i\right) \\
& e_{m}(i, A)=f_{m}(i, A)-f_{m+1}(i, A) \tag{1.4}\\
& \quad=\operatorname{Pr}\left(x_{n}(\omega) \in A \quad \text { exactly } m \text { times } \mid x_{0}(\omega)=i\right)
\end{align*}
$$

[^0]
[^0]: Received November 8, 1966.
 ${ }^{1}$ This research was supported in part by a U. S. Army contract.

