APPENDIX TO MY PAPER "ON UNIQUE FACTORIZATION IN ALGEBRAIC FUNCTION FIELDS"

BY
J. V. Armitage

1. Introduction. The proof in $\S 4$ of the paper of the title [1] is much too sketchy and open to some quite alarming misinterpretations. For example, Dr. E. Kunz has pointed out to me that it would appear to "prove" that \mathbf{Q}^{2} viewed as a vector space over \mathbf{Q} is a finite union of lines through the origin. In fact, in order to justify the assertion (12) in [1] one must use the relation between the linear topology and the topology defined by the valuation $\|\alpha\|_{\mathfrak{F}_{j}}$. In this appendix, we supply the details of the argument.
2. Proof of the finite intersection property. We begin by amplifying the remark on the ordering of the linear spaces $L=\mathfrak{Z}(\mathfrak{b}, S)+R$. Observe that one need consider only a finite number of possibilities for deg (b). Now order the L by considering $\sum_{j=1}^{s}\left(\nu_{\Re_{j}}(\mathfrak{b})\right)^{2}$. From the resulting sequence $\Lambda=\left(L_{i}\right)$, we select subsequences $\Lambda^{(j)}=\left(L_{i}^{(j)}\right), 1 \leq j \leq s$, which together give Λ and such that in $\Lambda^{(j)}, \nu_{\mathfrak{F}_{j}}\left(\mathfrak{b}_{i}\right)$ is strictly increasing.

Now in (12) of [1] the argument ought to run as follows. If (11) holds for every n, then either (12) holds (in which case we have finished) or for every sequence (λ_{i}) of coset representatives the finite intersection property fails for some n. It is this latter possibility which was dismissed without comment in [1]. Suppose that we are in this case and assume for the moment that one can construct a sequence (λ_{i}) of coset representatives which is a finite union of convergent subsequences (in the sense of the topology defined by $\left\|\|_{\mathfrak{P}_{j}}\right.$). Let $\hat{\lambda} \in \hat{K}$ denote the limit of one of them. Then for $\lambda \in K$ and arbitrarily close to $\hat{\lambda}$ at $\mathfrak{F}_{1}, \cdots, \mathfrak{F}_{s}$ (approximation theorem, see Chevalley, [2, Chapter I, §6]) either $\lambda \notin \Lambda$ (in which case we already have a contradiction to (3) of [1]) or $\lambda \epsilon$ some L. But then, since \hat{E} is an ultrametric space, all the λ_{i} sufficiently close to λ are in L. By considering the other subsequences, we obtain a finite covering as in (8) of [1].

It remains to justify our assumption on the existence of such subsequences in the case in question. Suppose for simplicity of notation, that $\lambda_{1}^{(1)} \notin L_{1}^{(1)}$ but $\lambda_{1}^{(1)} \in L_{2}^{(1)}$. (If $\lambda_{1}^{(1)}$ is not in any member of $\Lambda^{(1)}$, then we can ignore $\Lambda^{(1)}$.) We construct $\lambda_{2}^{(1)} \notin L_{1}^{(1)} \cup L_{2}^{(1)}$ and such that

$$
\nu_{\Re_{1}}\left(\lambda_{2}^{(1)}\right)>\nu_{\Re_{1}}\left(\lambda_{1}^{(1)}\right) \quad \text { and } \quad \nu_{\Re_{j}}\left(\lambda_{2}^{(1)}-\lambda_{1}^{(1)}\right)
$$

is arbitrarily large for $2 \leq j \leq s$. From now on, we omit the superfix 1 .
Received August 4, 1967.

