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1. Introduction

The purpose of this paper is to study probability measure spaces (X, 2, u)
by means of algebraic models (T, ¢) consisting of an abelian group T and a
function of positive type ¢ on T (see Definitions 2 and 3). Algebraic models
determine uniquely the measures, in the sense that two measures are es-
sentially equal, or conjugate (see Definition 1) if and only if they possess
isomorphic algebraic models (Theorem 2). Every algebraic measure system
(T, ¢) is an algebraic model for a certain measure (Theorem 3). In particu-
lar, we obtain a new reduction of a measure u on an abstract set, to a regular
Borel measure p’ on an abelian compact group (Theorem 4), and we give
conditions in order that u’ should be a Haar measure ( Theorem 5).

2. Conjugate measures

Let (X, Z, u) be a probability measure space. We denote by I'(x) the set
of the (equivalence classes of) functions f ¢ L”(u) with |f| = 1. Then I'(x)
is a multiplicative group with the complex conjugate f as inverse of a function
feT(u). If we identify the circle group C with the constant functions of
T'(u), wehave C < T'(u).

Remark. Using the existence of a lifting (see [4]) we can consider that
T'(u) is a group of u-measurable functions f : T — E with | f| = 1, such that
f, 9 eT(p) and f(x) = g(x) (u-almost everywhere) imply f(z) = g(z) for
every = ¢ X.

We define the complex function ¢, on T'(u) by

a(f) = [fdu for feT(.

ProposiTIiON 1. @, 18 a function of positive type on T'(u) and
ou(f) =1 if and only if f = 1.

In fact, for every family (f;)1<i<a of functions of T'(x) and for every family
(ei)1sisn of complex numbers we have

Zaidiefifi) = 2oy ffffj du = f l;  fi " du > 0;
2] )
therefore ¢, is of positive type.
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