the free product of algebras ${ }^{1}$

BY
Thomas W. Hungerford
Introduction

Let A and B be differential graded augmented algebras over a commutative ring K. Their free product $A * B$ is always defined; $A * B$ is a differential graded augmented K-algebra which together with canonical injections

$$
A \xrightarrow{\iota_{A}} A * B \stackrel{\iota_{B}}{\longleftrightarrow} B
$$

forms a universal diagram in this category. In connection with certain topological questions, Berstein [1] first studied the free product of algebras and its homology; he showed for example that the homology of the loop space of $X_{1} \vee X_{2}$ (where X_{i} are spaces with "nice" base point) is the free product $H\left(\Omega X_{1}\right) * H\left(\Omega X_{2}\right)$. We shall study the free product and its homology from a somewhat different viewpoint.

The first section is devoted to the definition and basic properties of the free product, including a consideration of Hopf algebras. Some of this material appears in Berstein [1], but is stated here for convenience since our notation is different and our definitions are somewhat more general (Berstein considers only positively graded connected K-algebras).

Palermo [10] and the author [5], [6] have studied the relationship between the vaious homologies $H(A), H(B)$, and $H(A \otimes B)$. The chief purpose of this paper is to extend these investigations to $H(A * B)$. In particular since $A * B$ is defined in terms of the tensor product it seems natural to ask whether or not $H(A \otimes B)$ completely determines $H(A * B)$. Examples in Section 2 show that the answer is negative; furthermore neither does $H(A * B)$ determine $H(A \otimes B)$. For $K=Z$ and A, B torsion-free, it is known that the algebras $H(A)$ and $H(B)$ do not determine the algebra $H(A \otimes B)$; but $H(A \otimes B)$ is completely determined by the homology spectra of A and B (cf. Palermo [10], and [5]). The analogues of these facts are presented in Section 3: $H(A)$ and $H(B)$ are not sufficient to determine $H(A * B)$ (Example 3.4), but the algebra $H(A * B)$ is completely determined by the homology spectra of A and B (Theorem 3.3).

In the final sections, the work of Dold and Puppe [4] is used to develop a theory of derived functors for the nonadditive functor $A * B$. Not surprisingly these derived functors turn out to be closely related to the ordinary derived functors of the multiple tensor product (c.f [6]). Using these results we are able to state a "Künneth theorem" which relates the (additive) struc-

[^0]
[^0]: Received February 17, 1967.
 ${ }^{1}$ This research was supported by a National Science Foundation grant.

