AN EXTENSION OF RADON'S THEOREM¹

BY

JOHN R. REAY

1. introduction

Let "m-set" mean a set of m points in the d-dimensional space \mathbb{R}^d . An m-set is said to be (r, k)-divisible if it can be partitioned into r pair-wise disjoint subsets in such a way that the intersection of the convex hulls of these r subsets is at least k-dimensional. (We always assume $0 \leq k \leq d$. The empty set is (-1)-dimensional, while 0-dimensional sets are non-empty.)

A classic theorem of J. Radon [5] asserts that each (d + 2)-set is (2, 0)divisible. The first generalization for r > 2 was given by R. Rado [4]. B. Birch [1] conjectured (and proved for d = 2) that each ((d + 1)(r - 1) + 1)-set is (r, 0)-divisible, while H. Tverberg [6] established this conjecture for all values of d. It is clear that if k > 0 then other conditions on a given *m*-set S besides a lower bound on its cardinality are necessary if S is to be (r, k)-divisible. For example, if all the points of Swere on a line in \mathbb{R}^d , no subset would have a convex hull of dimension greater than one. The purpose of this paper is to consider various types of independence that may be imposed upon an *m*-set to insure (r, k)-divisibility (Section 3) and to prove the following theorem which extends the results mentioned above.

THEOREM 1. Each [(d + 1)(r - 1) + k + 1]-set of strongly independent points in \mathbb{R}^d is (r, k)-divisible.

A set S in \mathbb{R}^d is said to be *strongly independent* provided that each finite family $\{S_1, \dots, S_r\}$ of pair-wise disjoint subsets of S has the following property:

(1) If
$$d_i = (\text{card } S_i) - 1 \le d$$
, then
(1) $\dim (\bigcap_{i=1}^r \inf S_i) = \max (-1, d - \sum_{i=1}^r (d - d_i)).$

(Condition (1) may be thought of as follows: Since $(d - d_i)$ is just the deficiency of aff S_i when S_i is in general position, condition (1) implies the general position of S and its subsets. Thus the right side of the equation is essentially the dimension of the space reduced by the deficiencies of the flats aff S_i . This keeps the flats aff S_i from forming "pencils of lines", "books of planes", etc.)

We will let $\lim S$, aff S, card S, and conv S denote respectively the linear

Received January 6, 1967.

 $^{^{1}}$ The author is grateful to the Grünbaum Foundation for its incentive and support of this research.