ON THE NUMBER OF CO-MULTIPLICATIONS OF A SUSPENSION¹

BY

C. M. NAYLOR

In [2], Arkowitz and Curjel established a criterion for determining when an associative H-space possesses only a finite number of multiplications. That their result can be dualized is the subject of the present note.

An H'-structure, or co-multiplication, on a space Z is a based map

$$\varphi: Z \to Z \lor Z$$

which has the property that the compositions $\pi_1 \circ \varphi$ and $\pi_2 \circ \varphi$ are both homotopic to the identity map of Z, where π_1 and π_2 are the obvious projections.

Let X be a CW-complex of locally-finite type. Then, by the Hilton-Milnor Theorem, $\Omega\Sigma(X \lor X)$ is homotopy equivalent to $\prod_k \Omega\Sigma P_k$ where k runs through a set of basic products for the set $\{1, 2\}$. To each basic product k there is associated a positive integer $\omega(k)$, the weight of k, and P_k has the homotopy type of

$$\underbrace{\frac{\omega(k)}{X \wedge X \wedge \cdots \wedge X}}_{$$

Moreover, the homotopy equivalence is given by a map of the form $\prod_k \Omega g_k$, where $g_k : \Sigma P_k \to \Sigma(X \lor X)$ is an iterated generalized Whitehead product which is associated with the basic product k. In particular $P_1 = P_2 = X$ and the maps $g_i : \Sigma X \to \Sigma(X \lor X)$ (i = 1, 2) are the inclusions. All g_k with $\omega(k) \ge 2$ are Whitehead products involving both the first and second factors of $\Sigma(X \lor X)$. For more details see [3] or [7].

If $f: X \to \Omega\Sigma(X \lor X)$ is any map, then there is a map $\overline{f}: X \to \prod_k \Omega\Sigma P_k$ with $\prod_k \Omega g_k \circ \overline{f} \sim f$. Let $p_k: \prod \Omega\Sigma P_k \to \Omega\Sigma P_k$ denote the projection, and let $\pi_i: \Sigma(X \lor X) \to \Sigma X$ (i = 1, 2) denote the projections.

Theorem 1. $\Omega \pi_i \circ f \sim p_i \circ \overline{f} \ (i = 1, 2).$

Proof. By the above, $\Omega \pi_1 \circ f \sim \Omega \pi_1 \circ \prod_k \Omega g_k \circ \overline{f}$. Since $\Omega \pi_1$ is a homomorphism, $\Omega \pi \circ \prod_k \Omega g_k = \prod \Omega(\pi_1 \circ g_k)$. But every basic product k with $\omega(k) \geq 2$ involves both 1 and 2, thus $\pi_i \circ g_k \sim *$ $(i = 1, 2 \text{ and } \omega(k) \geq 2)$. Since also $\pi_1 \circ g_2 \sim *$ and $\pi_2 \circ g_1 \sim *$, Theorem 1 is proved.

Received April 14, 1967.

¹ This research was supported in part by a National Science Foundation Grant and forms part of the author's Stanford doctoral dissertation. The author thanks Professor Hans Samelson for his advice and many suggestions.