ON LIMIT-PRESERVING FUNCTORS

BY

J. F. KENNISON

Following Lambek [2] we shall use the suggestive term "infimum" for the generalized inverse limit of Kan. "Supremum" is defined dually. In [1], the infimum (supremum) is known as a "left root" ("right root"). The terms "inf-complete" and "inf-preserving" are used in the obvious way.

If α is a small category then $[\alpha, \text{Ens}]$ shall denote the category of all (covariant) functors from α to the category Ens of sets. $[\alpha, \text{Ens}]_{inf}$ shall be the full subcategory of inf-preserving functors.

The theorem below answers an open question raised in the introduction to [2]. As Lambek points out this result implies that $[\alpha, \operatorname{Ens}]_{inf}$ is sup-complete and can be regarded as a nicely behaved completion of α° , the dual or opposite category of α .

THEOREM. Let α be a small category. Then $[\alpha, \text{Ens}]_{\text{inf}}$ is a reflective subcategory of $[\alpha, \text{Ens}]$.

Notation. In what follows, " Γ " shall always be used to denote a functor whose domain is a small category, *I*. We shall also always use $A_i = \Gamma(i)$ for $i \in I$.

If $\Gamma: I \to \alpha$ has an inf we shall denote it by $(A, u) = \inf \Gamma$ where $u = \{u_i : A \to A_i \mid i \in I\}$ is the required natural transformation from the constant functor to Γ .

If $\Gamma: I \to \text{Ens}$ then $\inf \Gamma = (A, u)$ always exists and we may assume that $A \subseteq \prod A_i$ and that each u_i is the restriction of the projection function $p_i: \prod A_i \to A_i$. It then follows that $x \in A$ iff $x \in \prod A_i$ and $h(p_i(x)) = p_j(x)$ whenever $h \in \Gamma(\text{Hom } (i, j))$.

LEMMA 1. Let $G : \mathfrak{a} \to \text{Ens}$ be an inf-preserving functor whose action on morphisms is denoted by $G(f) = \overline{f}$. Let F be a function from the class of objects of \mathfrak{a} to the class of sets. Assume $F(A) \subseteq G(A)$ for all $A \in \mathfrak{a}$. Then F can be regarded, in the natural way, as an inf-preserving functor iff

(1) for each morphism $f: B \to A$ it is true that

$$\bar{f}(F(B)) \subseteq F(A);$$

(2) whenever $(A, u) = \inf \Gamma$, for $\Gamma : I \to \alpha$, then

$$F(A) \supseteq \bigcap \bar{u}_i^{-1}(F(A_i)).$$

Proof. Clearly (1) is equivalent to the statement that F is functorial in the natural way. Notice that (1) and (2) imply $F(A) = \bigcap \bar{u}_i^{-1}(F(A_i))$. It suffices to show that $\inf (F\Gamma) = \bigcap \bar{u}_i^{-1}(F(A_i))$.

Received April 14, 1967.