ON MOMENT SEQUENCES OF OPERATORS

BY

DANY LEVIATAN

1. Introduction

Let X, Y be Banach spaces over the complex field and denote by $B \equiv B(X, Y)$ the space of continuous linear operators on X into Y. Recently Tucker [6] has introduced a weak extension Y^+ of the Banach space Y and has proved that $B^+ \subseteq B(X, Y^+)$. The weak extension Y^+ is by construction a subspace of Y^{**} , consequently if $\overline{B^+}$ denotes the closure of B^+ in $B^{**}(X, Y)$ topologized in the natural way we obtain $\overline{B^+} \subseteq B(X, Y^{**})$.

DEFINITION 1. Given a sequence $\{\psi_n(t)\}$ $(n \ge 0) \subseteq C[0, 1]$, the sequence $\{A_n\} \subseteq B(X, Y)$ is called a weak moment sequence with respect to $\{\psi_n(t)\}$ if there exists a vector-valued measure μ , defined on the σ -field of Borel sets in [0, 1] into $\overline{B^+}$ such that

- $\mu(\cdot)b^*$ is in rea [0, 1] for each $b^* \epsilon B^*(X, Y)$; (i)
- the mapping $b^* \to \mu(\cdot)b^*$ is continuous with the B(X, Y) and C[0, 1](ii) topologies of $B^*(X, Y)$ and rca [0, 1] respectively; $b^*A_n = \int_0^1 \psi_n(t)\mu(dt)b^* \quad n = 0, 1, 2, \cdots, b^* \epsilon B^*(X, Y);$ $\|\mu\|[0, 1] = \sup \|\sum \alpha_i \mu(E_i)\| < \infty,$
- (iii)

(iv)

where the supremum is taken over all finite collections of disjoint Borel sets in [0, 1] and all finite sets of scalars α_i with $|\alpha_i| \leq 1$.

DEFINITION 2. Given a sequence $\{\psi_n(t)\} \subseteq C[0, 1]$, the sequence $\{A_n\} \subseteq B(X, Y)$ is called a strong moment sequence with respect to $\{\psi_n(t)\}$ if there exists a vector-valued measure μ , defined on the σ -field of Borel sets in [0, 1] into B(X, Y) such that

- $b^{*}\mu(\cdot)$ is in rea [0, 1], $b^{*} \in B^{*}(X, Y)$; (i)
- $A_n = \int_0^1 \psi_n(t) \mu(dt) \quad n = 0, 1, 2, \cdots;$ (ii)
- (iii) $\| \mu \| [0, 1] < \infty.$

(For definitions and details see [2].)

It is our purpose to obtain necessary and sufficient conditions on a sequence $\{A_n\}$ $(n \ge 0)$ of operators in B(X, Y) in order that it will be a weak or a strong moment sequence with respect to $\{\psi_n(t)\}\ (n \ge 0)$ in various cases of sequences $\{\psi_n(t)\}$. We shall be interested, especially, in the case where $\psi_n(t) = t^{\lambda_n}, n \ge 0$, where the sequence $\{\lambda_n\}$ $(n \ge 0)$ satisfies

(1.1)
$$0 \leq \lambda_0 < \lambda_1 < \cdots < \lambda_n < \cdots \uparrow \infty, \qquad \sum_{i=1}^{\infty} 1/\lambda_i = \infty.$$

Received July 29, 1967.