A CHARACTERIZATION OF SOME MULTIPLY TRANSITIVE PERMUTATION GROUPS, I

BY DIETER HELD

The objective of this paper is to give a proof of the following result:

Theorem A. Let G be a finite simple group which contains an involution t such that the following conditions are satisfied:

- (I) The centralizer $C_G(t)$ of t in G is a splitting extension of an elementary abelian normal 2-subgroup of order at most 16 by S_4 , the symmetric group of degree four;
 - (II) the centre of a Sylow 2-subgroup of $\mathbf{C}_{\mathcal{G}}(t)$ is cyclic.

Then G is isomorphic to one of the following groups A_8 , A_9 , A_{10} or M_{22} . Here A_n denotes the alternating group of degree n, and M_{22} is the Mathieu simple group on 22 letters.

This result is a consequence of the following

THEOREM B. Let π_0 be an involution contained in the centre of a Sylow 2-subgroup of A_{10} . Denote by H_0 the centralizer of π_0 in A_{10} .

Let G be a finite group with the following two properties:

- (a) G has no subgroups of index 2, and
- (b) G possesses an involution π such that the centralizer $\mathbf{C}_{\mathcal{G}}(\pi)$ of π in G is isomorphic to H_0 .

Then G is isomorphic to A_{10} .

Remark. Let G be a group satisfying the assumptions of Theorem A. Then $\mathbf{C}_G(t)$ contains an elementary abelian normal 2-subgroup M of order at most 16 such that $\mathbf{C}_G(t)$ is a splitting extension of M by S_4 . Hence |M| is equal to 8 or 16. It is straightforward to check, that, if |M| = 8, then $\mathbf{C}_G(t)$ is uniquely determined. Application of the result in [8] yields that G is isomorphic to A_8 or A_9 if |M| = 8. However, if |M| = 16, there are precisely two possibilities for $\mathbf{C}_G(t)$ as has been observed in [10]. One of these possibilities is that $\mathbf{C}_G(t)$ is isomorphic to the centralizer H_1 of an involution of M_{22} , the other possibility is that $\mathbf{C}_G(t)$ is isomorphic to the centralizer of an involution of A_{10} . The theorem in [10] states that if $\mathbf{C}_G(t)$ is isomorphic to H_1 then G is isomorphic to M_{22} . Hence, in order to prove Theorem A, it suffices to prove Theorem B.

1. Some properties of H_0

The group H_0 is isomorphic to a group H generated by the elements π , μ ,

Received July 16, 1967.