SOME SUBGROUPS OF $S L_{n}\left(\mathbf{F}_{2}\right)$

BY
 Jack McLaughlin ${ }^{1}$
 1. Introduction

In this paper we determine those irreducible subgroups of $S L_{n}\left(\mathbf{F}_{2}\right)$ which are generated by transvections.

Theorem. Let V be a vector space of dimension $n \geqq 2$ over \mathbf{F}_{2} and let G be an irreducible subgroup of $S L(V)$ which is generated by transvections. If $G \neq S L(V)$ then $n \geqq 4$ and G is one of the following subgroups of $S p(V)$: $\operatorname{Sp}(V), O_{-1}(V), O_{1}(V)$ (except at $\left.n=4\right)$, the symmetric group of degree $n+2$, or the symmetric group of degree $n+1$.

This result has some relevance to the question left open in [3].
Some of the notation and terminology of [3] will be used and we review it briefly there. (Since we work over a finite prime field our assumption that G is generated by transvections is equivalent to the assumption that G is generated by subgroups of root type.) If G contains the transvection τ with $P=\operatorname{Im}(\tau-1)$ and $H=\operatorname{Ker}(\tau-1)$ we say P is a center (for $G), H$ is an axis (for G). Also we say P is a center for H and H is an axis for P. The set of centers for G is C and the set of axes for G is A. For $P \epsilon C, a(P)$ is the intersection of the axes of P and for $H \in A, c(H)$ is the sum of the centers for H.

2. Preliminary lemmas

Our determination will be made by induction on n; in this section we collect some information needed for the induction. G is a group satisfying the hypotheses of the theorem.

Lemma 2.1. G is transitive on C and A.
Proof. Choose P such that $\operatorname{dim} a(P)$ is maximal. Then Lemma 2 of [3] tells us that G has an orbit of centers containing P and all centers off $a(P)$. Since G is irreducible there cannot be a second orbit. Likewise for A.

Lemma 2.2. If $P \in C$ and $a(P)$ is not a hyperplane then $G=S L(V)$.
Proof. Choose $P \in C$ and suppose S is another center on $a(P)$. By Lemma 4 of [3] we have a center Q off $a(P)$ and $a(S)$. Let K be a hyperplane over $Q+a(P)$. Since $K \supseteq a(P), K$ is an axis for P. Then using Lemma 2 of [3] we see K is an axis for Q and then K is an axis for S. Thus all points on $P+S$ are centers. Since G is irreducible, C spans V and consequently every

[^0]
[^0]: Received May 24, 1967.
 ${ }^{1}$ Research supported in part by a grant from the National Science Foundation.

