SOME SUBGROUPS OF $SL_n(\mathbf{F}_2)$

BY

JACK MCLAUGHLIN¹

1. Introduction

In this paper we determine those irreducible subgroups of $SL_n(\mathbf{F}_2)$ which are generated by transvections.

THEOREM. Let V be a vector space of dimension $n \ge 2$ over \mathbf{F}_2 and let G be an irreducible subgroup of SL(V) which is generated by transvections. If $G \ne SL(V)$ then $n \ge 4$ and G is one of the following subgroups of Sp(V): $Sp(V), O_{-1}(V), O_1(V)$ (except at n = 4), the symmetric group of degree n + 2, or the symmetric group of degree n + 1.

This result has some relevance to the question left open in [3].

Some of the notation and terminology of [3] will be used and we review it briefly there. (Since we work over a finite prime field our assumption that *G* is generated by transvections is equivalent to the assumption that *G* is generated by subgroups of root type.) If *G* contains the transvection τ with $P = \text{Im}(\tau - 1)$ and $H = \text{Ker}(\tau - 1)$ we say *P* is a center (for *G*), *H* is an axis (for *G*). Also we say *P* is a center for *H* and *H* is an axis for *P*. The set of centers for *G* is *C* and the set of axes for *G* is *A*. For $P \in C$, a(P)is the intersection of the axes of *P* and for $H \in A$, c(H) is the sum of the centers for *H*.

2. Preliminary lemmas

Our determination will be made by induction on n; in this section we collect some information needed for the induction. G is a group satisfying the hypotheses of the theorem.

LEMMA 2.1. G is transitive on C and A.

Proof. Choose P such that dim a(P) is maximal. Then Lemma 2 of [3] tells us that G has an orbit of centers containing P and all centers off a(P). Since G is irreducible there cannot be a second orbit. Likewise for A.

LEMMA 2.2. If $P \in C$ and a(P) is not a hyperplane then G = SL(V).

Proof. Choose $P \in C$ and suppose S is another center on a(P). By Lemma 4 of [3] we have a center Q off a(P) and a(S). Let K be a hyperplane over Q + a(P). Since $K \supseteq a(P)$, K is an axis for P. Then using Lemma 2 of [3] we see K is an axis for Q and then K is an axis for S. Thus all points on P + S are centers. Since G is irreducible, C spans V and consequently every

Received May 24, 1967.

¹ Research supported in part by a grant from the National Science Foundation.