THE LOGARITHMIC EIGENVALUES OF PLANE SETS

BY
John L. Troutman

Let S be a bounded set in the complex plane (E) having the same positive two dimensional Lebesgue measure as its closure ($\overline{\mathcal{S}}$). Denote the open set complementary to $\overline{\mathrm{S}}$ by $\widetilde{\mathrm{S}}$, and define S^{*}, the support of S, as follows:

$$
S^{*}=\left\{z \in S: S \cap \Delta_{r}(z) \text { has positive measure for each } r>0\right\}
$$

where $\Delta_{r}(z)$ is the open disk of radius r and center z.
For such sets a functional μ is defined by

$$
\mu(S)=\inf _{f \in L_{1}^{2}(s)}\left\{-\frac{2}{\pi} \int_{s} \int_{s} \log |z-\zeta| f(z) \bar{f}(\zeta) d \tau_{z} d \tau_{s}\right\}
$$

where $L_{1}^{2}(S)$ is the set of all complex-valued functions which are square integrable over S with $\|f\|_{2} \leq 1$, and τ is Lebesgue measure in the plane.

Clearly $\mu(S) \leq 0$, and in an earlier paper [1], it was shown that $\mu(S)$ is negative iff d, the transfinite diameter of $\overline{S^{*}}$ exceeds unity in which case the following inequality holds:

$$
0<-\mu<(2 A / \pi) \log d
$$

where A is the area of S^{*}.
Since $S \sim S^{*}$ has measure zero, it follows that $\mu(S)=\mu\left(S^{*}\right)$; hence attention may be restricted to bounded measurable support sets S, i.e. those plane sets for which $S=S^{*}$. (Observe that $\left(S^{*}\right)^{*}=S^{*}$.) Such sets which in addition have closures with transfinite diameter exceeding unity will be called admissible sets.

In the present paper, the dependence of μ on the class of admissible sets will be investigated. It will first be shown that μ is a monotone set functional which is continuous with respect to an appropriate type of convergence.

Next, a variational estimate for μ with respect to an important class of boundary variations is given and this formula is used to attack extremal problems suggested by the inequality: $0<-\mu<(2 A / \pi) \log d$. Specifically, it is proven that among all simply connected admissible domains of given transfinite diameter and sufficiently smooth boundary, the disk is the only one for which the value of the ratio $-\mu / A$ is stationary with respect to the boundary variations considered. Then, by use of specific domains, it is shown that $-\mu / A$ has neither maximum nor minimum under these conditions.
In [1], it was also shown that for admissible sets, μ is the unique negative

