SPECTRAL REPRESENTATIONS FOR A GENERAL CLASS OF OPERATORS ON A LOCALLY CONVEX SPACE

BY

STEPHEN PLAFKER¹

1. Introduction

The material in this paper is a generalization of the work of Maeda [15] which in turn generalized the work of Foias [8], C. Ionescu Tulcea [10], and Dunford [6].

Throughout the paper the symbol N will denote the set $\{0, 1, 2, \dots\}, Z$ the set of integers, R the set of real numbers, R^2 or C the Euclidean (complex) plane, and T^1 the unit circle in R^2 considered as a one-dimensional manifold. For any subset S of R^2 , $\Re(S)$ will be the set of all compact subsets of R^2 contained in S; \Re will denote $\Re(R^2)$.

For a non-empty open subset Q of C the algebra $\mathfrak{IC}(Q)$ of complex-valued functions holomorphic on Q will be endowed with the topology of uniform convergence on compact subsets of Q. A holomorphic function over $K \in \mathfrak{R}$ is a function holomorphic over some open neighborhood of K. Two holomorphic functions f and g over K are equivalent if f | Q = g | Q for some neighborhood Q of K. The set $\mathfrak{IC}(K)$ of equivalence classes of functions holomorphic over K is considered as an algebra in the natural way. When endowed with the "van Hove topology" (the inductive limit topology induced by the natural mappings of $\mathfrak{IC}(Q)$ into $\mathfrak{IC}(K)$), $\mathfrak{IC}(K)$ is a topological algebra with unit 1. The symbol $\lambda(\lambda \in C)$ will denote the element $\lambda 1$ of $\mathfrak{IC}(K)$; the symbol z, the identity function of \mathbb{R}^2 onto itself considered as an element of $\mathfrak{IC}(K)$. Similarly, for $\lambda \in \mathbb{C}K(=\mathbb{C}\backslash K)$, the function ψ_{λ} defined by the equation $\psi_{\lambda}(z) =$ $1/(\lambda - z)$ is the inverse of $(\lambda - z)$ in $\mathfrak{IC}(K)$. The basic properties of $\mathfrak{IC}(Q)$ and $\mathfrak{IC}(K)$ are discussed in [21].

All vector spaces will be over the complex field C. If E and F are vector spaces, let $\mathfrak{L}^*(E, F)$ be the set of linear mappings of E into F; if E and F are topological vector spaces, let $\mathfrak{L}(E, F)$ be the set of continuous linear mappings of E into F. Whenever E is a separated locally convex space, $\mathfrak{L}(E)(=\mathfrak{L}(E, E))$ will be assumed endowed with the topology of uniform convergence on sets of a family of bounded sets in E. $\mathfrak{L}(E)$ is an algebra whose identity element will be denoted by I. Let $E' = \mathfrak{L}(E, C)$, the (topological) dual of E.

If $T \in \mathfrak{L}^*(D_T, E)$ where D_T is a subspace of E, one says that T is a transformation or mapping defined in E. A transformation T in E is said to have the single-valued extension property [6] if, for any open subset Q of C and any

Received September 25, 1967.

 $^{^{\}rm 1}$ This research was partially supported by a grant from the National Science Foundation.