A LIMITATION THEOREM FOR CESÀRO SUMMABLE SERIES

BY
S. Muкнотi

1. Introduction

We consider the Cesàro summability, for integral orders of the series $\sum_{\nu=0}^{\alpha} a_{\nu} d_{\nu}$. In this paper we establish a limitation theorem for this series.

Results of this character, but not overlapping with those in this paper, were given by Hardy and Littlewood [7] and by Andersen [1]. Andersen's result was extended by Bosanquet and Chow [5], and further extended by Bosanquet [4].

Notation. We write

$$
A_{n}^{0}=A_{n}=a_{0}+a_{1}+\cdots+a_{n}, \quad A_{n}^{k}=A_{0}^{k-1}+A_{1}^{k-1}+\cdots+A_{n}^{k-1}
$$

and we get the identities [6]

$$
A_{n}^{k}=\sum_{\nu=0}^{n}\binom{n-\nu+k-1}{k-1} A_{\nu}, \quad A_{n}^{k}=\sum_{\nu=0}^{n}\binom{n-\nu+k}{k} a_{\nu}, \quad E_{n}^{k}=A_{n}^{k}
$$

when $a_{0}=1, a_{n}=0$, for $n>0$ i.e. when $A_{n}=1$, for all n. So

$$
E_{n}^{k}=\binom{n+k}{k} \sim \frac{n^{k}}{k!}
$$

$\sum a_{n}$ is said to be summable (C, k) to A if $A_{n}^{k} / E_{n}^{k} \rightarrow A$ as $n \rightarrow \infty$, or equivalently if $k!A_{n}^{k} / n^{k} \rightarrow A$.

We write $\Delta d_{n}=d_{n}-d_{n-1}$, following L. S. Bosanquet [3]. We will use the following identity (see L. S. Bosanquet [3]):

$$
\begin{equation*}
\Delta^{k}\left(U_{n} V_{n}\right)=\sum_{\nu=0}^{k}\binom{k}{\nu} \Delta^{\nu} U_{n} \Delta^{k-\nu} V_{n-\nu} \tag{1.1}
\end{equation*}
$$

2. Statement of the theorem and two lemmas.

Theorem 1. Suppose that $d_{n}>0$, for $n \geq 0$, and
(i) $d_{n+1}=o(1)$ as $n \rightarrow \infty$,
(ii) $\frac{d_{n+1}}{n^{k}} \sum_{\nu=0}^{n} \nu^{k}\binom{n-\nu+k}{k} \frac{1}{d_{\nu+k+1}}=O(1)$,
(iii) $\left|\Delta^{j}(1 / d \nu+k+1)\right| \leq K\left|\Delta^{j-1}\left(1 / d_{\nu}+k+1\right)\right|$,
$j=1,2, \cdots, k+1 ; k \geq 0, k$ an integer $; \Delta$ operating on ν.
Then $A_{n}^{k}=o\left(n^{k} / d_{n+1}\right)$ whenever $\sum_{\nu=0}^{\infty} a_{\nu} d_{\nu}$ is summable (C, k).
We require the following lemmas.

[^0]
[^0]: Received January 10, 1968.

