TOPOLOGICAL SEMIGROUPS AND FIXED POINTS

BY
Theodore Mitchell ${ }^{1}$

1. Introduction

In this paper, we consider four fixed point properties that a topological semigroup S might conceivably possess.
(F1) Whenever S acts on a compact Hausdorff space Y, where the map $S \times Y \rightarrow Y$ is jointly continuous, then Y contains a common fixed point of S.
(F2) Whenever S acts affinely on a convex compact subset Y of a locally convex linear topological space, where the map $S \times Y \rightarrow Y$ is jointly continuous, then Y contains a common fixed point of S.
(F3) Whenever S acts on a compact Hausdorff space Y, where the map $S \times Y \rightarrow Y$ is separately continuous, then Y contains a common fixed point of S.
(F4) Whenever S acts affinely on a convex compact subset Y of a locally convex linear topological space, where the map $S \times Y \rightarrow Y$ is separately continuous, then Y contains a common fixed point of S.

For each of these four properties, we investigate the question as to whether there exists some subspace of $C(S)$ whose left amenability (or whose extreme left amenability) is equivalent to the specified (Fi). It is shown that for each of the ($F i$), there does indeed exist such an associated subspace of $C(S)$; in fact, a total of three spaces will suffice to characterize the four properties in this manner. Let $f \in C(S)$, and define $\theta_{f}: S \rightarrow C(S)$ by $\theta_{f} s=l_{s} f$ for $s \in S$. Then we will say $f \in L U C(S)(f \in W L U C(S))\{f \in L M C(S)\}$ if the map θ_{f} is continuous when $C(S)$ is given the supremum norm topology (w-topology) \{weak topology induced by the multiplicative means on $C(S)\}$. The following are shown in Sections 3 and 4

Theorem 1. $\quad S$ satisfies (F1) iff $L U C(S)$ has a multiplicative left invariant mean.

Theorem 2. \quad s satisfies (F2) iff $L U C(S)$ has a left invariant mean.
Theorem 3. $\quad S$ satisfies (F3) iff $L M C(S)$ has a multiplicative left invariant mean.

Theorem 4. $\quad S$ satisfies (F4) iff $W L U C(S)$ has a left invariant mean.
The concept of characterizing fixed point properties of topological semi-

[^0]
[^0]: Received July 24, 1968.
 ${ }^{1}$ This work was supported by a National Science Foundation grant and by a Temple University Faculty Research Award.

