THE RING OF POLAR PRESERVING ENDOMORPHISMS OF AN ABELIAN LATTICE-ORDERED GROUP

BY
P. F. Conrad and J. E. Diem ${ }^{1}$

1. Introduction

Let G be an abelian lattice-ordered group (l-group). We investigate the ring $P(G)$ generated by the semiring $P^{+}(G)$ of all group endomorphisms α of G such that for $x, y \in G$

$$
x \wedge y=0 \quad \text { implies } \quad x \wedge y \alpha=0
$$

$P(G)$ is a po subring of the ring $B(G)$ of all order-bounded endomorphisms of G with $P^{+}(G)$ as its positive cone. If A is any ring of l-endomorphisms of G that contains the identity automorphism I, then $A \subseteq P(G)$. Thus $P(G)$ is the largest such ring. We show (Theorem 3.4) that the class

$$
\{P(G): G \text { is an archimedean } l \text {-group }\}
$$

is identical with the class of archimedean f-rings with identity. This allows us to derive many useful properties of $P^{+}(G)$.

For an archimedean l-group G, the largest f-ring of $B(G)$ that contains the identity is $P(G)$. Let G be an archimedean l-group with a weak order unit e. Then there is at most one multiplication on G so that G is an f-ring with identity e, and such a multiplication exists if and only if $\left\{e \alpha: \alpha \in P^{+}(G)\right\}=G^{+}$.

The elements in $P^{+}(G)$ preserve minimal prime subgroups. In Section 6 we investigate those group endomorphisms of G which preserve all the prime subgroups. In Section 7 we apply our theory to solve a problem posed by G. Birkhoff.

Notation and terminology. If G is an l-group, then we denote its positive cone by $G^{+}=\{g \in G: g \geqq 0\}$. An l-subgroup of G is a subgroup K whichis also a sublattice. If, in addition, $0<x<k \in K$ implies $x \in K$, then we say that K is a convex l-subgroup. An l-ideal is a normal convex l-subgroup. A prime subgroup is a convex l-subgroup M such that $x \wedge y \in M$ implies $x \in M$ or $y \in M$. Various other characterizations of prime subgroups are given in [4] and [9]. An l-endomorphism of G is a group endomorphism that also preserves the lattice operations. Thus an endomorphism α of G is an l-endomorphism if and only if $x \wedge y=0$ implies $x \alpha \wedge y \alpha=0$ [7].

If X is a subset of G, then

$$
X^{\prime}=\{g \in G:|g| \wedge|x|=0 \text { for all } x \in X\}
$$

is called the polar of $X . \quad X^{\prime}$ is a convex l-subgroup of G and the set $p(G)$ of

[^0]
[^0]: Received November 15, 1968.
 ${ }^{1}$ This research was supported by a grant from the National Science Foundation.

