VECTOR LATTICES AND SEQUENCE SPACES¹

BY

G. CROFTS AND J. J. MASTERSON

1. Introduction

In [6], Peressini and Sherbert study Köthe sequence spaces and mappings between these spaces with special emphasis on their order properties. Variations of these results appear in [5]. The purpose of this paper is to extend some of these results. Among other things, it will be shown by using techniques involving the Dedekind completion of a vector lattice, that condition "E is Dedekind complete" can be replaced by "E is Archimedean" in several places.

Let *E* be a vector lattice. We say the net $\{x_{\alpha}\}$ order converges to *x* in *E* (we write $x_{\alpha} \rightarrow^{\circ} x$) if there exists a net $\{y_{\alpha}\} \subset E$ such that $|x_{\alpha} - x| \leq y_{\alpha}$ and $y_{\alpha} \downarrow 0$ (i.e., $\{y_{\alpha}\}$ is down-directed and $\inf(y_{\alpha}) = 0$). As in [6], we note the following significant restrictions which may be put on *E*.

(A) If A is a subset of E that has a supremum, then there is a countable subset A' of A such that $\sup A' = \sup A$. (We say that E is order separable.)

(B) If $\{y_{n, m}\}$ is a sequence in E that order converges to y_n in E (for each $n = 1, 2, \dots$,) and if $\{y_n\}$ order converges to y_0 there is an increasing sequence $\{m_n : n = 1, 2, \dots,\}$ of positive integers such that $\{y_{n, m_n}\}$ order converges to y_0 . (We say E has the *diagonal property*. Note that we use the definition in [5] rather than [6].)

(C) If $\{A_n\}$ is a sequence of non-majorized subsets of E, there exist finite subsets A'_n of A_n $(n = 1, 2, \dots)$ such that

 $\{\sup A'_n : n = 1, 2, \cdots\}$

is not a majorized set. (We say that E is finitely unbounded.)

2. The Dedekind completion

Let E be an Archimedean vector lattice throughout this section. Nakano has shown [3] that a necessary and sufficient condition that E be Archimedean is that it possess a Dedekind completion (or cut completion) i.e., that there exist a complete vector lattice \hat{E} such that:

(D1) E is embedded as a subvector lattice in \hat{E} ,

(D2) for each $u \in \hat{E}$,

 $u = \sup \{x : x \in E, x \leq u\} = \inf \{y : y \in E, y \geq u\}$

In [1], it is shown that (D2) can be replaced by

(D2') For $0 < u \in \hat{E}$, there are x, y in E such that $0 < x \leq u < y$.

¹ This work was supported in part by a National Science Foundation grant. Received August 1, 1969.