A NOTE ON THE STONG-HATTORI THEOREM

BY

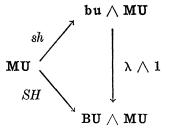
LARRY SMITH

Summary. The theorem of Stong and Hattori referred to in the title asserts that the natural mapping

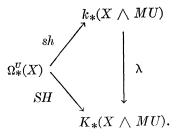
$$sh: \Omega^U_*(X) \to K_*(X \wedge MU)$$

is a split monomorphism whenever X is a finite complex with torsion free integral homology. In the present note we will show that the map sh remains monic (although need no longer be split) for those complexes with $\Omega_*^{U}(X)$ of projective dimension at most one as an Ω_*^{U} -module. Two proofs will be presented—one for K-theory and one for k-theory. We show by example that the result is best possible.

Let us begin by fixing our notations and conventions. We assume that we are working in a suitable category of spectra where the \wedge product is defined, such as that constructed by Boardman [9]. We denote by $\Omega_*^{\nu}(\)$ the complex bordism homology theory which is represented by the Thom spectrum **MU**. We write $K_*(\)$ for the homology theory dual to the usual Kcohomology theory, and $k_*(\)$ for the homology theory represented by the connective **bu** spectrum. The representing spectrum for $K_*(\)$ is denoted by **BU**. There is the natural commutative diagram of spectra



which for any finite complex X yields a commutative diagram



Note that $sh = (1_{bu} \wedge 1)_*$ and similarly for SH.

Received February 25, 1971.