NOTE ON A CRITERION OF SCHEERER

BY

PETER HILTON, GUIDO MISLIN, AND JOSEPH ROITBERG

1. Introduction

In [4] Scheerer considered principal G-bundles over S^n

(1.1)
$$G \to E_{\alpha} \xrightarrow{f_{\alpha}} S^n,$$

classified by $\alpha \in \pi_{n-1}(G)$, and proved the following theorem.

THEOREM 1.1. Suppose the diagram

(1.2)
$$S^{n-1} \times G \xrightarrow{\mu(\alpha \times 1)} G \\ \downarrow 1 \times k \\ \downarrow k \\ S^{n-1} \times G \xrightarrow{\mu(k\alpha \times 1)} G$$

is (homotopy) commutative, where $k: G \to G$ is the k^{th} power map and $\mu: G \times G \to G$ is the multiplication. Then

(1.3) $k\alpha_0 \circ f_{\alpha} = 0$

where $\alpha_0 : S^n \to B_G$ is adjoint to α .

Now consider the pull-back diagram

Then, of course, (1.3) guarantees that

(1.5) $\bar{E} = E_{\alpha} \times G,$

so that Theorem 1.1 is highly relevant to the study of non-cancellation phenomena¹ in [1], [2], [3], [4]. Indeed in [2] it is shown that the hypothesis of Theorem 1.1 above is equivalent, in the case $G = S^3$, to the key condition

(1.6)
$$\frac{1}{2}k(k-1)\omega\circ\Sigma^{3}\alpha=0\ \epsilon\ \pi_{n+2}(S^{3})$$

Received February 3, 1972.

¹ A different, but related, approach to non-cancellation phenomena is due to A. Sieradski.