SEQUENCE MIXING AND α-MIXING

BY
J. R. Blum, ${ }^{1}$ S. L. M. Christiansen and D. Quiring
\section*{1. Introduction}

Let (Ω, a, m) be a probability space and let τ be a bimeasurable, invertible transformation mapping Ω onto Ω. All sets discussed throughout will be assumed to be elements of $Q . \quad \tau$ is measure-preserving if $m(\tau A)=m(A)$ for all A, it is ergodic if

$$
\lim (1 / n) \sum_{j=0}^{n-1} m\left(\tau^{j} A \cap B\right)=m(A) m(B) \quad \text { for all } A \text { and } B
$$

it is weak mixing if

$$
\lim (1 / n) \sum_{j=0}^{n-1}\left|m\left(\tau^{j} A \cap B\right)-m(A) m(B)\right|=0 \quad \text { for all } A \text { and } B
$$

and strong mixing if

$$
\lim m\left(\tau^{n} A \cap B\right)=m(A) m(B) \quad \text { for all } A \text { and } B
$$

Since weak mixing already implies that $\lim m\left(\tau^{n} A \cap B\right)=m(A) m(B)$, except possibly along a sequence of asymptotic density zero (which may depend on A and B), it might be supposed that there is no room between weak mixing and strong mixing. At a symposium on ergodic theory held at Tulane University in October 1961, one of the authors proposed the notion of sequence mixing. $\quad \tau$ is sequence mixing if for every A with $m(A)>0$ and every infinite sequence of integers $\left\{k_{n}\right\}$ we have $m\left(U \tau^{k_{n}} A\right)=1$. It is trivial to verify that strong mixing implies sequence mixing but for a number of years it remained an open question whether the converse holds. Recently Friedman and Ornstein, [2] showed that this is not the case. They define a transformation τ to be α-mixing for $\alpha \in(0,1)$ if

$$
\liminf _{n} m\left(\tau^{n} A \cap B\right) \geq \alpha m(A) m(B) \quad \text { for all } A \text { and } B
$$

and show that for every $\alpha \in(0,1)$ there exist transformations which are α-mixing but not ($\alpha+\varepsilon$)-mixing for any $\varepsilon>0$. Thus we may suppose that for every $\alpha \in(0,1)$ there exists an α-mixing transformation and sets A and B with $m(A)>0, m(B)>0$ and $\liminf _{n} m\left(\tau^{n} A \cap B\right)=\alpha m(A) m(B)$.

In this paper we construct a transformation which is sequence mixing but not α-mixing for any $\alpha \in(0,1)$. It follows from the lemma below that α-mixing implies sequence mixing and it follows from [1] that sequence mixing implies weak mixing. Therefore α-mixing is strictly between weak and strong mixing. Also Friedman [3] gives an example of a weak mixing transformation T such that for some set A with $0<m(A)<1$ we have

[^0]
[^0]: Received April 20, 1972.
 ${ }^{1}$ Research supported by a National Science Foundation grant.

