SEQUENCE MIXING AND α -MIXING

BY

J. R. Blum,¹ S. L. M. CHRISTIANSEN AND D. QUIRING

1. Introduction

Let (Ω, α, m) be a probability space and let τ be a bimeasurable, invertible transformation mapping Ω onto Ω . All sets discussed throughout will be assumed to be elements of α . τ is measure-preserving if $m(\tau A) = m(A)$ for all A, it is ergodic if

$$\lim_{x \to \infty} (1/n) \sum_{j=0}^{n-1} m(\tau^{j}A \cap B) = m(A)m(B) \text{ for all } A \text{ and } B,$$

it is weak mixing if

$$\lim_{n \to \infty} (1/n) \sum_{j=0}^{n-1} |m(\tau^{j}A \cap B) - m(A)m(B)| = 0 \text{ for all } A \text{ and } B,$$

and strong mixing if

 $\lim m(\tau^n A \cap B) = m(A)m(B) \text{ for all } A \text{ and } B.$

Since weak mixing already implies that $\lim m(\tau^n A \cap B) = m(A)m(B)$, except possibly along a sequence of asymptotic density zero (which may depend on A and B), it might be supposed that there is no room between weak mixing and strong mixing. At a symposium on ergodic theory held at Tulane University in October 1961, one of the authors proposed the notion of sequence mixing. τ is sequence mixing if for every A with m(A) > 0 and every infinite sequence of integers $\{k_n\}$ we have $m(U\tau^{k_n}A) = 1$. It is trivial to verify that strong mixing implies sequence mixing but for a number of years it remained an open question whether the converse holds. Recently Friedman and Ornstein, [2] showed that this is not the case. They define a transformation τ to be α -mixing for $\alpha \in (0, 1)$ if

 $\liminf_n m(\tau^n A \cap B) \ge \alpha m(A)m(B) \quad \text{for all } A \text{ and } B,$

and show that for every $\alpha \in (0, 1)$ there exist transformations which are α -mixing but not $(\alpha + \varepsilon)$ -mixing for any $\varepsilon > 0$. Thus we may suppose that for every $\alpha \in (0, 1)$ there exists an α -mixing transformation and sets A and B with m(A) > 0, m(B) > 0 and $\liminf_n m(\tau^n A \cap B) = \alpha m(A)m(B)$.

In this paper we construct a transformation which is sequence mixing but not α -mixing for any $\alpha \in (0, 1)$. It follows from the lemma below that α -mixing implies sequence mixing and it follows from [1] that sequence mixing implies weak mixing. Therefore α -mixing is strictly between weak and strong mixing. Also Friedman [3] gives an example of a weak mixing transformation T such that for some set A with 0 < m(A) < 1 we have

Received April 20, 1972.

¹ Research supported by a National Science Foundation grant.