ON THE DIMENSION OF VARIETIES OF SPECIAL DIVISORS, II¹

BY

R. F. LAX

1. Introduction

In [1], we defined the analytic spaces \mathscr{G}_n^r , the universal analytic spaces of special divisors. We derived the equations which define the tangent space at a point of $\mathscr{G}_n^r - \mathscr{G}_n^{r+1}$. Let X be a compact Teichmuller surface of genus g and suppose s_0 is the module point of X on T_g , the Teichmuller space. Let D be a divisor on X of degree n and dimension r and let i denote the index of specialty of D. With the notation of [1], the tangent space to \mathscr{G}_n^r at (s_0, D) is defined by ir equations $E_{j,k}$, where $j = 1, \ldots, r$ and $k = 1, \ldots, i$, in the 3g - 3 + n unknowns $s_1, \ldots, s_n, b_1, \ldots, b_{3g-3}$. The coefficient of b_m in $E_{j,k}$ is given by evaluating $\alpha_{j,k}$, a certain quadratic differential depending on D, at a point Q_m on X, which is chosen to satisfy certain requirements.

PROPOSITION 1. Suppose (s_0, D) is in $\mathscr{G}_n^r - \mathscr{G}_n^{r+1}$ and suppose that $ir \leq 3g - 3$. Put $\tau = (r + 1)(n - r) - rg$. Then if all the $\alpha_{j,k}$ are linearly independent, the dimension of the tangent space to \mathscr{G}_n^r at (s_0, D) is $3g - 3 + \tau + r$ and (s_0, D) is a smooth point of \mathscr{G}_n^r .

Proof. [1].

In [1], we showed that $\mathscr{G}_n^1 - \mathscr{G}_n^2$, if nonempty, is smooth of pure dimension $3g - 3 + \tau + 1$. In this paper, by explicit computations, we show that \mathscr{G}_n^2 (resp. \mathscr{G}_n^3) has a component of dimension $3g - 3 + \tau + 2$ (resp. $3g - 3 + \tau + 3$) if τ is nonnegative. Our computations are based on examples given by Meis [2].

2. Meis's work

In [2], Meis demonstrates the existence of special divisors for the case r = 1. Since this monograph is rather difficult to obtain, we will review his method in some detail.

His proof proceeds by considering the universal analytic space of special divisors \mathscr{G}_n^1 over the Teichmuller space T_g and explicitly exhibiting a special fiber of dimension $\tau + 1$ in the case in which *n* is the minimum integer such that τ is nonnegative. He may then conclude that a component of \mathscr{G}_n^1 has dimension $3g - 3 + \tau + 1$ and that this component maps surjectively down to T_g .

Received September 16, 1974.

¹ These results comprise a portion of the author's doctoral dissertation, M.I.T., 1973.