ESSENTIALLY $\left(G_{1}\right)$ OPERATORS AND ESSENTIALLY CONVEXOID OPERATORS ON HILBERT SPACE

BY
Glenn R. Luecke

Introduction

Let H be a separable Hilbert space and let $\mathscr{B}(H)$ be all operators (continuous linear transformations) from H into H. Let π be the quotient map from $\mathscr{B}(H)$ onto the Calkin algebra $\mathscr{B}(H) / \mathscr{K}$, where \mathscr{K} denotes all compact operators in $\mathscr{B}(H) . T \in \mathscr{B}(H)$ is essentially normal, essentially hyponormal, essentially G_{1}, or essentially convexoid if $\pi(T)$ is normal, hyponormal, G_{1}, or convexoid in $\mathscr{B}(H) / \mathscr{K}$, respectively. Denote each of the above sets in $\mathscr{B}(H)$ by $e(\mathcal{N}), e(\mathscr{H})$, $e(\mathscr{G})$, and $e(\mathscr{C})$, respectively, where \mathscr{N} is the set of all normal operators on H, \mathscr{H}, is the set of all hyponormal operators on H, \mathscr{G} is the set of all operators on H satisfying growth condition G_{1} (i.e. $\left\|(T-z)^{-1}\right\|=1 / d(z, \sigma(T))$ for all $z \notin \sigma(T)$ where $\sigma(T)$ denotes the spectrum of $T)$, and \mathscr{C} is the set of all convexoid operators on H (i.e., the convex hull of the spectrum of T, co $\sigma(T)$, is equal to the closure of the numerical range of $T, \overline{W(T)})$. The spectral properties of essentially G_{1} operators and essentially convexoid operators are discussed in [9]. Along with ways of constructing nontrivial examples, section one contains several elementary facts about elements in the Calkin algebra and some of the basic properties of essentially G_{1} operators and essentially convexoid operators. The main results of the second section are: (1) $e(\mathscr{N})$ is a closed nowhere dense subset of $e(\mathscr{H})$, (2) $e(\mathscr{H})$ is a closed nowhere dense subset of $e(\mathscr{G})$, (3) $e(\mathscr{G})$ is a closed nowhere dense subset of $e(\mathscr{C})$, and (4) $e(\mathscr{C})$ is a closed nowhere dense subset of $\mathscr{B}(H)$.

I. Basic properties and examples

For each $T \in \mathscr{B}(H)$ let $\sigma_{e}(T)$ denote the essential spectrum of T, i.e., $\sigma_{e}(T)$ is the set of all complex numbers λ such that $\pi(T)-\lambda$ is not invertible in the Calkin algebra. The proof of the following remark is straightforward.

Remark 1. If $T=A \oplus B$ on $H \oplus H$, then $\sigma_{e}(T)=\sigma_{e}(A) \cup \sigma_{e}(B)$.
Theorem 1. If $A, B \in \mathscr{B}(H)$, then $\|\pi(A \oplus B)\|=\operatorname{Max}\{\|\pi(A)\|,\|\pi(B)\|\}$.
Theorem 1 is an immediate consequence of Remark 1 and the fact that the norm of a self-adjoint element of a B^{*}-algebra is equal to its spectral radius.

