FINITE SIMPLE GROUPS OF 2-RANK 3 WITH ALL 2-LOCAL SUBGROUPS 2-CONSTRAINED

BY
Michael E. O'Nan
Introduction

In this paper we obtain the following:
Theorem. Let G be a finite simple group of 2-rank 3 in which all 2-local subgroups are 2-constrained. Then G is isomorphic to one of the groups $L_{2}(8), U_{3}(8)$, $S z(8)$, or $G_{2}(3)$.

Here to say that G is of 2-rank 3 means that G has an elementary abelian subgroup of order 8 but none of order 16. Alperin, Brauer, and Gorenstein have determined all simple groups of 2-rank 2.

We note also that Stroth has recently obtained this same result using a different method. In addition, Stroth has determined all finite groups of 2-rank 3 in which some 2-local subgroup is not 2-constrained.

The proof of this theorem is possibly more interesting than its statement. One way to prove the theorem is to use a recent theorem of Gorenstein and Lyons [8], to conclude that either G is known, or G possesses a nonsolvable 2-local subgroup H. Set $\bar{H}=H / O(H)$. If 7 divides the order of \bar{H}, then a theorem of Alperin yields the structure of \bar{H}. Other results then identify G. If 7 does not divide the order of \bar{H}, it is possible to show that $\bar{H} / O_{2}(\bar{H})$ is a subgroup of the automorphism group of A_{5} or A_{6}, and that $O_{2}(\bar{H})$ is of restricted type. We do not employ this procedure. Rather we prove analogues of Glauberman's $Z J$-theorem. Essentially we prove four propositions which guarantee that G has exactly two conjugacy classes of maximal 2-local subgroups. These are:

Proposition 1. Let H be a 2-constrained group of 2 -rank 3 with $O(H)=1$. Suppose that 7 divides the order of H. Then, either
(1) $\mathrm{O}_{2}(\mathrm{H})$ is an abelian group or a Suzuki 2-group and $\mathrm{H} / \mathrm{O}_{2}(\mathrm{H})$ is of odd order, or
(2) $\mathrm{O}_{2}(\mathrm{H})$ is homocyclic abelian of rank 3, and $\mathrm{H} / \mathrm{O}_{2}(\mathrm{H})$ is isomorphic to $L_{3}(2)$.

As stated above, known results will identify G if H is a 2-local subgroup of G. When 7 divides the order of no 2-local of G, we wish to obtain a contradiction. The tools of this attempt are the following three propositions.

[^0]
[^0]: Received May 20, 1975.
 This research was partially supported by a National Science Foundation grant and by the Alfred Sloan Foundation.

