EQUIVARIANT AND HYPEREQUIVARIANT COHOMOLOGY

BY

M. V. MIELKE

0. Introduction

The notion of equivariant cohomology with supports and with coefficients in a sheaf (module bundle) is defined and studied in Section 1 (Section 2). Theorem 1.4 shows that, under certain conditions on the supports and on the coefficients, equivariant cohomology can be reduced to ordinary sheaf theoretic cohomology. In Section 3 this fact is used in the construction of an equivariant Ω -spectrum for equivariant cohomology when the coefficient module bundle and the family of supports are of a certain type (Theorem 3.2). In Section 4 hyperequivariant cohomology is introduced. Theorems 4.2 and 4.3 show that, under various assumptions (Remark 4.4), hyperequivariant cohomology can be reduced to equivariant cohomology and can be classified by a hyperequivariant Ω -spectrum. It should be noted that classically the notions of equivariant and hyperequivariant cohomology coincide due to the fact that a group of automorphisms of a space is also a group in the category of spaces. In this paper "equivariance" is based on categorical groups (in particular, group bundles) and "hyperequivariance" is based on automorphism groups (of equivariant systems).

1. Equivariant cohomology with sheaf coefficients

Let \mathscr{A} be a sheaf of modules over a sheaf of rings \mathscr{R} on a space X (\mathscr{A} is an \mathscr{R} -module in the sense of [1, p. 4]). If $f: X \to Y$ is a continuous map and \mathscr{A}' is an \mathscr{R}' -module on Y then any f-cohomomorphism of sheaves of modules

$$(k, r)$$
: $(\mathscr{A}', \mathscr{R}') \to (\mathscr{A}, \mathscr{R})$

induces a map $[1, p. 45] k_Y: \Gamma(\mathscr{A}') \to \Gamma(\mathscr{A})$, the image of which has the structure of a $\Gamma(\mathscr{R}')$ -module. Let γ be a compactly generated group bundle over a compactly generated space B [9, Section 1] and let $\xi \in C = (\text{Haus } CG \downarrow B)$ (see [6, pp. 46 and 181]) be a left γ -space for which $q: \xi \to \xi/\gamma$, the quotient map onto the space of orbits, is in C, i.e., ξ/γ is Hausdorff (in general, an object in C and the total space of that object will be denoted by the same letter). Let \mathscr{A} be an \mathscr{R} -module on ξ . A γ -structure on \mathscr{A} , briefly denoted by \mathscr{A}^k , consists of an \mathscr{R}' -module \mathscr{A}' on ξ/γ together with a q-cohomomorphism $(k, r): (\mathscr{A}', \mathscr{R}') \to$ $(\mathscr{A}, \mathscr{R})$. Define $\Gamma(\mathscr{A}^k)$, the $\Gamma(\mathscr{R}')$ -module of γ -equivariant sections, by $\Gamma(\mathscr{A}^k) =$ image $k_{\xi/\gamma}$. If ϕ is a family of supports on ξ let

$$\Gamma_{\phi}(\mathscr{A}^k) = \Gamma(\mathscr{A}^k) \cap \Gamma_{\phi}(\mathscr{A}).$$

Received August 1, 1974.