A CLASS OF DIFFERENTIAL INEQUALITIES IMPLYING BOUNDEDNESS

BY
Sanford S. Miller ${ }^{1}$

Let B denote the class of bounded functions $w(z)=w_{1} z+w_{2} z^{2}+\cdots$ regular in the unit disc U for which $|w(z)|<1$. If $g(z) \in B$, then by using the Schwarz lemma we can show that the function $w(z)$ defined by $w(z)=$ $z^{-1 / 2} \int_{0}^{z} g(t) t^{-1 / 2} d t$ is also in B. Writing this result in terms of derivatives we have

$$
\begin{equation*}
\left|\frac{1}{2} w(z)+z w^{\prime}(z)\right|<1, z \in U \Rightarrow|w(z)|<1, z \in U \tag{1}
\end{equation*}
$$

All of the inequalities considered in this paper hold uniformly in the unit disc U, and in what follows we will omit the condition $z \in U$. Furthermore, if we let $h(u, v)=\frac{1}{2} u+v$ we can write (1) as

$$
\begin{equation*}
\left|h\left(w(z), z w^{\prime}(z)\right)\right|<1 \Rightarrow|w(z)|<1 \tag{2}
\end{equation*}
$$

In this note we will show that (2) holds for functions $h(u, v)$ satisfying the following definition.

Definition 1. Let H be the set of complex functions $h(u, v)$ satisfying:
(i) $h(u, v)$ is continuous in a domain D of $\mathbf{C} \times \mathbf{C}$,
(ii) $(0,0) \in D$ and $|h(0,0)|<1$,
(iii) $\left|h\left(e^{i \theta}, k e^{i \theta}\right)\right| \geq 1$ when $\left(e^{i \theta}, k e^{i \theta}\right) \in D, \theta$ is real and $k \geq 1$.

Examples. It is easy to check that each of the following functions is in H :

$$
\begin{aligned}
h_{1}(u, v)= & \alpha u+v \text { where } \alpha \text { is complex with } \operatorname{Re} \alpha \geq 0, \\
& \text { and } D=\mathbf{C} \times \mathbf{C} \\
h_{2}(u, v)= & u^{2}+u+v \text { and } D=\mathbf{C} \times \mathbf{C} \\
h_{3}(u, v)= & \frac{1}{3}(|u|+|v|+1) \text { and } D=\mathbf{C} \times \mathbf{C} \\
h_{4}(u, v)= & 2 v /(1-u) \text { and } D=[\mathbf{C}-\{1\}] \times \mathbf{C}, \\
h_{5}(u, v)= & u e^{|v|} \text { and } D=\mathbf{C} \times \mathbf{C} \\
h_{6}(u, v)= & u^{m} v^{n} \text { where } m \text { and } n \text { are non-negative integers, } \\
& \text { and } D=\mathbf{C} \times \mathbf{C} .
\end{aligned}
$$

[^0]
[^0]: Received July 14, 1975.
 ${ }^{1}$ The author gratefully acknowledges support received under a grant from the Research Foundation of the State University of New York.

