KOLMOGOROV'S LAW OF THE ITERATED LOGARITHM FOR BANACH SPACE VALUED RANDOM VARIABLES ${ }^{1}$

BY
J. Kuelbs

1. Introduction

Let B denote a real separable Banach space with norm $\|\cdot\|$, and throughout X_{1}, X_{2}, \ldots are independent B-valued random variables such that $E X_{k}=0$ and $E\left\|X_{k}\right\|^{2}<\infty(k \geq 1)$. As usual $S_{n}=X_{1}+\cdots+X_{n}$ for $n \geq 1$ and we write $L x$ to denote $\log x$ for $x \geq e$ and 1 otherwise. The function $L(L x)$ is written $L L x$, and B^{*} denotes the topological dual of B.

In this paper we establish Kolmogorov's version of the LIL [6] for B-valued random variables, and this result will have several corollaries dealing with the LIL for i.i.d. sequences. In particular, the recent interesting result of G. Pisier [10, Thèoréme 4.3] will be obtained as an easy corollary (see Corollary 4.1).

To motivate Theorem 3.2 we now turn to the LIL for i.i.d. sequences in the Banach space setting, but first we need a bit of terminology.

If (M, d) is a metric space and $A \subseteq M, x \in M$, we define the distance from x to A by $d(x, A)=\inf _{y \in A} d(x, y)$. If $\left\{x_{n}\right\}$ is a sequence of points in M, then $C\left(\left\{x_{n}\right\}\right)$ denotes the cluster set of $\left\{x_{n}\right\}$. That is, $C\left(\left\{x_{n}\right\}\right)$ is all possible limit points of the sequence $\left\{x_{n}\right\}$. We also will use the notation $\left\{x_{n}\right\} \rightarrow A$ if both $\lim _{n}$ $d\left(x_{n}, A\right)=0$ and $C\left(\left\{x_{n}\right\}\right)=A$.

Now let X_{1}, X_{2}, \ldots be i.i.d. B-valued random variables such that $E X_{1}=0$ and $E\left\|X_{1}\right\|^{2}<\infty$. In view of Strassen's formulation of the Hartman-Wintner result [12] and the recent results in [7], [9], [10] we say X satisfies the LIL in B if for X_{1}, X_{2}, \ldots independent copies of X we have a bounded limit set K in B such that

$$
\begin{equation*}
P\left\{\left\{S_{n} / a_{n}: n \geq 1\right\} \rightarrow K\right\}=1 \tag{1.1}
\end{equation*}
$$

where $a_{n}=\sqrt{2 n L L n}(n \geq 1)$.
However, (1.1) is not always true under the classical moment assumptions in the infinite dimensional setting, but necessary and sufficient conditions for (1.1) to hold are known, and another will be established in Theorem 4.1 below.

If $\mu=\mathscr{L}\left(X_{1}\right)$ denotes the distribution of X_{1}, the limit set K turns out to be the unit ball of a Hilbert space H_{μ} which is uniquely determined by the covariance function

$$
\begin{equation*}
T(f, g)=\int_{B} f(x) g(x) d \mu(x)=E\left(f\left(X_{1}\right) g\left(X_{1}\right)\right) \quad\left(f, g \in B^{*}\right) \tag{1.2}
\end{equation*}
$$

[^0]
[^0]: Received March 25, 1976.
 ${ }^{1}$ Sponsored in part by the United States Army and by a National Science Foundation grant.

