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ON THE “STABLE” HOMOTOPY TYPE
OF KNOT COMPLEMENTS

BY
PuiLir S. HIRSCHHORN

1. Introduction

This paper is concerned with knots of codimension two, that is, embed-
dings of the (q-2)-sphere S¢72 in the g-sphere S% By Alexander duality, the
complement C of the knot (see Paragraph 2) has the same homology groups
as the circle S', and Levine [7], [8] has proved that if q#4, then C is
homotopy equivalent to S* if and only if the knot is trivial. We will consider
those knots for which there is a positive integer n such that m,C=mS" for
i=n. Thus, all fundamental groups will be infinite cyclic, and all higher
homotopy groups will be modules over A=Z[Z], the group ring of the
integers. Then, in Theorem 1 (see Paragraph 2), we prove that w,C is a
finitely generated acyclic A-module (see Paragraph 2) for n+1=i=2n (the
“stable range”).

Conversely, let X be any space for which mX = m,S" for i=n, and mX is
a finitely generated acyclic A-module for n+1=i=2n. Then, in Theorem 2
(see Paragraph 2), we prove that there is a knot complement C with the same
homotopy type as X through dimension 2n.

The first work in this direction was done by Kervaire. In [6] he proved,
under the assumptions above, that m,.,C is a finitely generated acyclic
A-module and that any finitely generated acyclic A-module can be so
realized. In [1], Brown and Dror showed that for n=2, the module =, ,,C
has the same characterization as ,,;C, and that these two modules are
independent of one another. In [3], Dror and Dwyer obtained results on
homology localizations in the stable range, which imply most of our
Theorem 1.

Our Theorems 1 and 2 have analogues for arbitrary homology circles, i.e.,
spaces with the same homology groups as the circle. In Theorems 1’ and 2
(see Paragraph 2) we show that in the ‘“‘stable range”, the homotopy type of
a homology circle has the same characterization as that of a knot comple-
ment, except that the acyclic A-modules involved are not required to be
finitely generated.

Organization of the paper. Paragraph 2 contains the definitions and the
statement of our results. Paragraph 3 begins with a review of perfect and
acyclic modules, and then proves Theorem 1. Paragraph 4 proves Theorem
2, and the proofs of Theorems 1' and 2’ are sketched in Paragraph 5.
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