A PROBLEM IN THE EXTENSION OF MEASURES

BY

A. MAITRA, B. V. RAO AND K. P. S. BHASKARA RAO

1. Introduction

The problem referred to in the title is as follows. Suppose (X, \mathcal{B}) is a measurable space, \mathfrak{A} a sub- σ -field of \mathcal{B} and μ a probability measure on \mathfrak{A} . Can μ be extended to a measure on \mathcal{B} ?

E. Marczewski has discussed various aspects of this problem in a number of articles, notably [10], [11], [12]. In [10], he constructed an example of a non-separable probability measure μ on a sub- σ -field \mathfrak{A} of the Borel σ -field \mathfrak{B} of the unit interval [0, 1]. Plainly μ cannot be extended to a measure on \mathfrak{B} , which shows that the answer to the problem posed above is, in general, no. Marczewski [11] then asked if a separable measure μ on a sub- σ -field \mathfrak{A} of the Borel σ -field \mathfrak{B} of the unit interval could be extended to \mathfrak{B} . The answer is again no as the following (unpublished) example of Marczewski shows. Take \mathfrak{A} to be the σ -field of meager and comeager Borel subsets of the unit interval and let μ be the measure on \mathfrak{A} which is 0 on meager Borel sets and 1 on comeager Borel sets. So defined, μ is a separable probability measure on \mathfrak{A} . But, as is well known, a probability measure on the Borel σ -field of the unit interval sits on a meager Borel set. Hence μ cannot be extended to a measure on the Borel σ -field.

In view of these examples, one is led to reformulate the above problem. To do so we first introduce some definitions. We shall say that a measurable space (X, \mathcal{B}) has the *extension property* if for every countably generated sub- σ -field \mathfrak{A} of \mathfrak{B} and any probability measure μ on \mathfrak{A} , μ can be extended to a measure on \mathfrak{B} . Of particular interest will be measurable spaces (X, \mathfrak{B}) such that \mathfrak{B} is countably generated and contains singletons. It is known that, if (X, \mathfrak{B}) is such a measurable space, then X can be metrized in such a way that it becomes a separable metric space and \mathfrak{B} is just the Borel σ -field \mathfrak{B} of X is countably generated and contains singletons. This leads us to the following definition. We say that a separable metric space X has the *extension property* if (X, \mathfrak{B}_X) has the extension property, where, for a metric space Y, \mathfrak{B}_Y denotes the Borel σ -field of Y.

The question naturally arises if every separable metric space has the extension property. We do not know if a separable metric space without the extension property can be shown to exist in ZFC. However, with additional axioms it is possible to prove the existence of such separable metric spaces.

© 1979 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received September 4, 1977.