TOPOLOGICAL SPACES IN WHICH BLUMBERG'S THEOREM HOLDS II

ΒY

H. E. WHITE, JR.¹

1. This note consists of some "odds and ends" involving Blumberg's theorem. Section 2 contains an example of a Baire space with a point countable base for which Blumberg's theorem does not hold; Section 3 deals with Blumberg's theorem for linearly ordered spaces; Section 4 is concerned with a strong form of Blumberg's theorem.

2. If X denotes a set, then $\mathbf{P}(X)$ denotes the collection of all subsets of X. If $A \subset X$ and $\mathscr{F} \subset \mathbf{P}(X)$, then $\mathscr{F} \cap A$ denotes $\{F \cap A; F \in \mathscr{F}\}$ and \mathscr{F}^* denotes $\mathscr{F} \sim \{\emptyset\}$. If (X, \mathcal{T}) is a topological space, a subset \mathscr{P} of \mathcal{T}^* is called a pseudo-base for \mathscr{T} if every element of \mathscr{T}^* contains an element of \mathscr{P} . A collection of sets of called σ -disjoint if it is the union of a countable set of disjoint collections. The set of real numbers is denoted by R; the set of positive integers by N.

2.1. THEOREM. If (X, \mathcal{T}) is a Baire space that has either a σ -point finite or σ -locally countable pseudo-base, then the following statement, known as Blumberg's theorem, holds for X.

2.2. If φ is a real valued function defined on X, then there is a dense subset D of X such that $\varphi \mid D$ is continuous.

Proof. This follows from [15, Proposition 1.7] and the following statements.

2.3. If \mathcal{T} has a σ -locally countable pseudo-base, then it has a σ -disjoint pseudo-base.

Proof. If \mathscr{C} is a locally countable subset of \mathscr{T}^* and \mathscr{U} is a maximal disjoint subcollection of \mathscr{T}^* such that $(\mathscr{C} \cap U)^*$ is countable for every U in \mathscr{U} , then $\mathscr{C}' = \bigcup \{ (\mathscr{C} \cap U)^* : U \in \mathscr{U} \}$ is a σ -disjoint subcollection of \mathscr{T}^* such that every element of \mathscr{C} contains an element of \mathscr{C}' .

Remark. In [5, Theorem 2.1] it is shown that \mathcal{T} has a σ -disjoint pseudobase whenever it has a σ -locally countable base.

2.4. PROPOSITION [6, Theorem 3.10]. If (X, \mathcal{T}) is a Baire space and \mathcal{C} is a point finite subset of \mathcal{T}^* , then there is a dense subset D of X such that \mathcal{C} is locally finite at every point of D.

 $\textcircled{\mbox{\sc c}}$ 1979 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received December 22, 1977.

¹ This work was partially supported by the Institute for Medicine and Mathematics, Ohio University.