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TOPOLOGICAL SPACES IN WHICH BLUMBERG’S
THEOREM HOLDS II

BY

H. E. WHITE, JR.

1. This note consists of some "odds and ends" involving Blumberg’s
theorem. Section 2 contains an example of a Baire space with a point
countable base for which Blumberg’s theorem does not hold; Section 3 deals
with Blumberg’s theorem for linearly ordered spaces; Section 4 is concerned
with a strong form of Blumberg’s theorem.

2. If X denotes a set, then P(X) denotes the collection of all subsets of
X. If A cX and Sr c P(X), then fqA denotes .{F fq A; F } and 0*
denotes -{0}. If (X, ) is a topological space, a subset of * is called a
pseudo-base for if if every element of * contains an element of . A
collection of sets of called g-disjoint if it is the union of a countable set of
disjoint collections. The set of real numbers is denoted by R; the set of
positive integers by N.

2.1. THEOREa. If (X, ) is a Baire space that has either a tr-point finite
or tr-locally countable pseudo-base, then the following statement, known as
Blumberg’s theorem, holds for X.

2.2. If 0 is a real valued unction defined on X, then there is a dense
subset D of X such that 01D is continuous.

Proof. This follows from [15, Proposition 1.7] and the following state-
ments.

2.3. If Y has a tr-locally countable pseudo-base, then it has a tr-disjoint
pseudo-base.

Proof. If qg is a locally countable subset of * and /t is a maximal
disjoint subcollection of * such that (c fq U)* is countable for every U in
R, then qg’= U{(qg f3 U)*: U//} is a tr-disjoint subcollection of ’* such
that every element of c contains an element of c,.

Remark. In [5, Theorem 2.1] it is shown that 3r has a r-disjoint
pseudobase whenever it has a tr-locally countable base.

2.4. PROPOSITION [6, Theorem 3.10]. If (X, ) is a Baire space and c is
a point finite subset of *, then them is a dense subset D of X such that c is
locally finite at every point of D.
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