TOPOLOGICAL SPACES IN WHICH BLUMBERG'S THEOREM HOLDS II

BY

H. E. White, Jr. ${ }^{1}$

1. This note consists of some "odds and ends" involving Blumberg's theorem. Section 2 contains an example of a Baire space with a point countable base for which Blumberg's theorem does not hold; Section 3 deals with Blumberg's theorem for linearly ordered spaces; Section 4 is concerned with a strong form of Blumberg's theorem.
2. If X denotes a set, then $\mathbf{P}(X)$ denotes the collection of all subsets of X. If $A \subset X$ and $\mathscr{F} \subset \mathbf{P}(X)$, then $\mathscr{F} \cap A$ denotes $\{F \cap A ; F \in \mathscr{F}\}$ and \mathscr{F}^{*} denotes $\mathscr{F} \sim\{\emptyset\}$. If (X, \mathscr{T}) is a topological space, a subset \mathscr{P} of \mathscr{T}^{*} is called a pseudo-base for \mathscr{T} if every element of \mathscr{T}^{*} contains an element of \mathscr{P}. A collection of sets of called σ-disjoint if it is the union of a countable set of disjoint collections. The set of real numbers is denoted by R; the set of positive integers by N.
2.1. Theorem. If (X, \mathscr{T}) is a Baire space that has either a σ-point finite or σ-locally countable pseudo-base, then the following statement, known as Blumberg's theorem, holds for X.
2.2. If φ is a real valued function defined on X, then there is a dense subset D of X such that $\varphi \mid D$ is continuous.

Proof. This follows from [15, Proposition 1.7] and the following statements.
2.3. If \mathscr{T} has a σ-locally countable pseudo-base, then it has a σ-disjoint pseudo-base.

Proof. If \mathscr{C} is a locally countable subset of \mathscr{T}^{*} and \mathscr{U} is a maximal disjoint subcollection of \mathscr{T}^{*} such that $(\mathscr{C} \cap U)^{*}$ is countable for every U in \mathscr{U}, then $\mathscr{C}^{\prime}=\cup\left\{(\mathscr{C} \cap U)^{*}: U \in \mathscr{U}\right\}$ is a σ-disjoint subcollection of \mathscr{G}^{*} such that every element of \mathscr{C} contains an element of \mathscr{C}^{\prime}.

Remark. In [5, Theorem 2.1] it is shown that \mathscr{T} has a σ-disjoint pseudobase whenever it has a σ-locally countable base.
2.4. Proposition [6, Theorem 3.10]. If (X, \mathscr{T}) is a Baire space and \mathscr{C} is a point finite subset of \mathscr{T}^{*}, then there is a dense subset D of X such that \mathscr{C} is locally finite at every point of D.

[^0]
[^0]: Received December 22, 1977.
 ${ }^{1}$ This work was partially supported by the Institute for Medicine and Mathematics, Ohio University.

