MULTIPLIERS OF THE DIRICHLET SPACE

BY

DAVID A. STEGENGA¹

Introduction

This paper deals with the space of analytic functions on the unit disc in the complex plane for which $\sum n^{\alpha} |a_n|^2$ is finite, where $\{a_n\}$ represent the Taylor coefficients and α is a real number. For $\alpha = 1$ this space can alternately be described by demanding that the Dirichlet integral $\iint |f'|^2 dx dy$ be finite. We also consider real variable analogs of these spaces on the circle and on Euclidean space. In \mathbb{R}^n , these are the fractional Sobolev space L_{α}^p .

Our principal result is a characterization of the pointwise multipliers of these spaces. Various authors have studied properties of these multipliers and determined sufficient conditions, see [24], [5], [14], [15], [16], and in the complex case [20], [25].

Denote by D_{α} the space of analytic functions for which the norm

$$\left\{\sum_{n=0}^{\infty} (1+n^2)^{\alpha} |a_n|^2\right\}^{1/2}$$

is finite.

THEOREM A. An analytic function f(z) multiplies D_{α} $(0 < \alpha \le \frac{1}{2})$ if and only if f is bounded on |z| < 1 and there is a constant A such that

$$\iint_{\bigcup S(I_j)} |f'|^2 (1-|z|)^{1-2\alpha} dx dy \leq A \operatorname{Cap}_{\alpha} (\cup I_j)$$

for all finite disjoint collections of subarc $\{I_i\}$ on the circle.

Here S(I) denotes the "square" in the disc with side I and Cap_{α} (·) denotes an appropriate (Bessel) capacity depending on α . For $\alpha = \frac{1}{2}$ (Dirichlet space) the classical logarithmic capacity may be used.

For multipliers of $L^p_{\alpha}(\mathbb{R}^n)$ and also a boundary characterization on D_{α} we have the following result:

Received March 3, 1978.

 $\textcircled{\sc 0}$ 1980 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

¹ This research was partially supported by the National Science Foundation.