2-COHOMOLOGY OF SOME UNITARY GROUPS

BY

GEORGE S. AVRUNIN

In [1], we showed that the 2-cohomology of the group SU(n, q) with coefficients in the standard module $V = \mathbf{F}_{q^2}^n$ is generally zero. For SU(2, q), which is, of course, equal to $SL(2, q^2)$, the only exceptions occur at $q = 2^k$ with $k \ge 2$; in unpublished work, McLaughlin has shown that the second cohomology group has dimension 1 over \mathbf{F}_{q^2} . For n > 2 and q > 3, the only possible exceptions are at n = 3 with q = 4 or 3^k and n = 4 with q = 4. In this paper, we prove that $H^2(SU(n, q), V)$ has dimension 1 over \mathbf{F}_{q^2} in the first case and vanishes in the second. We also show that $H^2(SU(3, 3), V)$ is zero.

In Section 1, we outline some basic results on the cohomology of groups. In the second section, we compute $H^2(SU(3, q), V)$ with q = 4 or 3^k , k > 1, while the 2-cohomology of SU(4, 4) is determined in the third section. Finally, we show $H^2(SU(3, 3), V) = 0$ in the fourth section.

1. In this section, we describe some results on the cohomology of groups which will be needed later. For a more complete discussion, the reader is referred to [2] and [5].

Let $1 \rightarrow A \rightarrow G \rightarrow X \rightarrow 1$ be an exact sequence of groups and let V be a (left) G-module. From the Lyndon-Hochschild-Serre spectral sequence we get the exact sequence

$$H^{2}(X, V^{A}) \to H^{2}(G, V)_{0} \to H^{1}(X, H^{1}(A, V)),$$

where V^A denotes the set of A-fixed points of V and $H^2(G, V)_0$ is the kernel of the restriction map res: $H^2(G, V) - H^2(A, V)^X$.

If A and V are finite elementary abelian p-groups and $V^A = V$, we have the exact sequence of X-modules

$$0 \to \text{Hom } (A, V) \xrightarrow{\mu} H^2(A, V) \xrightarrow{\varepsilon} \text{Alt}_2 (A, V) \to 0,$$

where Alt₂ (A, V) is the group of alternating \mathbf{F}_p bilinear forms from A to V. μ is the Bockstein operator with $\mu(h)$ equal to the class of the 2-cocycle

$$\mu_1(h)(a, b) = ((h(a) + h(b))^p - h(a)^p - h(b)^p)/p,$$

and ε is defined at the cocycle level by $\varepsilon(f)(a, b) = f(a, b) - f(b, a)$.

We shall be most interested in the case where A and V are vector spaces over some finite field K and $\dim_K A = 1$. In this situation we can take advantage of special direct sum decompositions of Hom (A, V) and Alt₂ (A, V) to simplify

Received May 8, 1978.

 $^{{\}rm \textcircled{O}}$ 1980 by the Board of Trustees of the University of Illinois Manufactured in the United States of America