2-COHOMOLOGY OF SOME UNITARY GROUPS

BY
George S. Avrunin

In [1], we showed that the 2-cohomology of the group $S U(n, q)$ with coefficients in the standard module $V=F_{q^{2}}^{n}$ is generally zero. For $S U(2, q)$, which is, of course, equal to $\operatorname{SL}\left(2, q^{2}\right)$, the only exceptions occur at $q=2^{k}$ with $k \geq 2$; in unpublished work, McLaughlin has shown that the second cohomology group has dimension 1 over $\mathbf{F}_{q^{2}}$. For $n>2$ and $q>3$, the only possible exceptions are at $n=3$ with $q=4$ or 3^{k} and $n=4$ with $q=4$. In this paper, we prove that $H^{2}(S U(n, q), V)$ has dimension 1 over $F_{q^{2}}$ in the first case and vanishes in the second. We also show that $H^{2}(S U(3,3), V)$ is zero.

In Section 1, we outline some basic results on the cohomology of groups. In the second section, we compute $H^{2}(S U(3, q), V)$ with $q=4$ or $3^{k}, k>1$, while the 2-cohomology of $S U(4,4)$ is determined in the third section. Finally, we show $H^{2}(S U(3,3), V)=0$ in the fourth section.

1. In this section, we describe some results on the cohomology of groups which will be needed later. For a more complete discussion, the reader is referred to [2] and [5].

Let $1 \rightarrow A \rightarrow G \rightarrow X \rightarrow 1$ be an exact sequence of groups and let V be a (left) G-module. From the Lyndon-Hochschild-Serre spectral sequence we get the exact sequence

$$
H^{2}\left(X, V^{A}\right) \rightarrow H^{2}(G, V)_{0} \rightarrow H^{1}\left(X, H^{1}(A, V)\right)
$$

where V^{A} denotes the set of A-fixed points of V and $H^{2}(G, V)_{0}$ is the kernel of the restriction map res: $H^{2}(G, V)-H^{2}(A, V)^{X}$.

If A and V are finite elementary abelian p-groups and $V^{A}=V$, we have the exact sequence of X-modules

$$
0 \rightarrow \operatorname{Hom}(A, V) \xrightarrow{\mu} H^{2}(A, V) \xrightarrow{\varepsilon} \operatorname{Alt}_{2}(A, V) \rightarrow 0,
$$

where $\mathrm{Alt}_{2}(A, V)$ is the group of alternating F_{p} bilinear forms from A to $V . \mu$ is the Bockstein operator with $\mu(h)$ equal to the class of the 2-cocycle

$$
\mu_{1}(h)(a, b)=\left((h(a)+h(b))^{p}-h(a)^{p}-h(b)^{p}\right) / p
$$

and ε is defined at the cocycle level by $\varepsilon(f)(a, b)=f(a, b)-f(b, a)$.
We shall be most interested in the case where A and V are vector spaces over some finite field K and $\operatorname{dim}_{K} A=1$. In this situation we can take advantage of special direct sum decompositions of $\operatorname{Hom}(A, V)$ and $\mathrm{Alt}_{2}(A, V)$ to simplify

