ON ISOMETRIES OF THE BLOCH SPACE

BY

J. A. CIMA AND W. R. WOGEN

Introduction

Let Δ denote the open unit disc in the complex plane C and let Γ be the unit circle. The (normalized) set \mathscr{B} of Bloch functions is defined as follows:

$$\mathscr{B} = \{f: f \text{ is holomorphic on } \Delta, f(0) = 0, \\ \text{and } \sup_{|z| < 1} |f'(z)| (1 - |z|^2) \equiv M(f) < \infty \}.$$

With pointwise operations and M(f) = ||f||, \mathcal{B} becomes a nonseparable Banach space. Let \mathcal{B}_0 denote the closed subspace of \mathcal{B} spanned by the polynomials. For many general properties of \mathcal{B} , see [1]. In [2], some function theoretic properties of the extreme points of the unit balls of \mathcal{B} and \mathcal{B}_0 are investigated.

In this paper we characterize the (linear) isometries of \mathcal{B}_0 and the onto isometries of \mathcal{B} . Our description of these isometries closely parallels descriptions of isometries of many other spaces of analytic functions. See, for instance, [3], [4], [6], and [7]. Our work is patterned after a proof in [5, p. 141] of a theorem describing the isometries of function algebras. Thus as a first step we identify \mathcal{B} with a subspace of $C_b(\Delta)$, the bounded continuous functions on Δ .

2. The Isometries of \mathscr{B}_0 .

Let $C(\Delta)$ denote the continuous functions on Δ , and let

$$\mathscr{C} = \{ f \in C(\Delta) \colon \| f \|_{\mathscr{C}} \equiv \sup_{|z| \le 1} | f(z)| (1 - |z|^2) < \infty \}.$$

Let $\mathcal{D} = \{f \in \mathscr{C} : f \text{ is holomorphic on } \Delta\}$. Then \mathcal{D} is a closed subspace of \mathscr{C} and the derivative mapping $D: f \to f'$ is a linear isometry of \mathscr{B} onto \mathscr{D} . Let $\mathcal{D}_0 = D(\mathscr{B}_0)$.

Now define a mapping $\Phi: C_b(\Delta) \to \mathscr{C}$ by $(\Phi f)(z) = f(z)(1 - |z|^2)^{-1}$. Clearly Φ is an onto linear isometry. We denote Φ^{-1} by Ψ . Let $\Psi(\mathscr{D}) = \mathscr{A}$, $\Psi(\mathscr{D}_0) = \mathscr{A}_0$. We then have

$$\mathscr{A} = \{ f'(z)(1 - |z|^2) : f \in \mathscr{B} \}, \qquad \mathscr{A}_0 = \{ f'(z)(1 - |z|^2) : f \in \mathscr{B}_0 \}$$

with $\mathscr{A}_0 \subset \mathscr{A} \subset C_b(\Delta)$ and $\mathscr{D}_0 \subset \mathscr{D} \subset C$. Indeed, $\mathscr{D}_0 \subset C_0(\Delta) \equiv$ all continuous functions on Δ which vanish on Γ .

Received May 5, 1978.

© 1980 by the Board of Trustees of the University of Illinois Manufactured in the United States of America