INJECTIVE *BP* * *BP*-COMODULES AND LOCALIZATIONS OF BROWN-PETERSON HOMOLOGY

BY

David Copeland Johnson, Peter S. Landweber¹ and Zen-ichi Yosimura

1. Introduction

BP is the Brown-Peterson spectrum for a fixed prime p; its homotopy is

$$BP_* \cong \mathbf{Z}_{(p)}[v_1, v_2, \ldots].$$

By convention, $v_0 = p$. $BP_*X = \pi_*(BP \wedge X)$ is a comodule over $BP_*BP \cong BP_*[t_1, t_2, \ldots]$. Let \mathscr{BP} be the category of all BP_*BP -comodules and comodule maps. The only prime ideals of BP_* which are in \mathscr{BP} are

$$I_0 = (0), I_1 = (p), \ldots, I_n = (p, v_1, \ldots, v_{n-1}), \ldots,$$

and

$$I_{\infty} = \bigcup_{n} I_{n} = (p, v_{1}, v_{2}, \ldots).$$

The Hurewicz homomorphism gives a right unit $\eta_R: BP_* \to BP_*BP$ and $\eta_R(v_n) \equiv v_n \mod I_n BP_*BP$. (N.B. $\eta_R(v_1) = v_1 + pt_1 \neq v_1$.)

We say that a BP_* -module M is \mathscr{BP} -injective if $\operatorname{Ext}_{BP_*}^i(A, M) = 0$ for all i > 0 and all comodules A in \mathscr{BP} . We define the \mathscr{BP} -weak dimension of M, w.dim $_{\mathscr{BP}} M$, to be less than n + 1 if $\operatorname{Tor}_{J}^{BP_*}(A, M) = 0$ for all j > n and all comodules A in \mathscr{BP} . If M, itself, is a connected comodule in \mathscr{BP} , w.dim $_{\mathscr{BP}} M$ is the same as the BP_* -projective dimension of M [8]. Our main algebraic result can be considered to be the dual of Landweber's exact functor theorem [8].

THEOREM 1.1. For a BP_* -module M to be \mathcal{BP} -injective, it suffices that it satisfy two conditions:

- (i) For each integer $n \ge 0$, $\operatorname{Hom}_{BP_*}(BP_*/I_n, M)$ is v_n -divisible.
- (ii) w.dim_{\mathcal{BP}} $M < \infty$.

Miller, Ravenel, and Wilson [13] develop a "chromatic resolution" of

$$BP_*: 0 \to BP_* \to M^0 \to M^1 \to \cdots$$

Received December 7, 1979.

© 1981 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

¹ Supported in part by a National Science Foundation grant.