AN EXACT FORMULA FOR AN AVERAGE OF L-SERIES

BY

Herbert Walum

Let χ be a character of a prime p. As usual,

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}, \quad \tau(\chi)=\sum_{r=1}^{p} \chi(r) e\left(\frac{r}{p}\right)
$$

where s is a complex variable and $e(z)=e^{2 \pi i z}$.
The average in question is

$$
\begin{equation*}
\sum_{\chi(-1)=-1}|L(1, \chi)|^{2}=\frac{(p-1)^{2}(p-2)}{12 p^{2}} \pi^{2} \tag{1}
\end{equation*}
$$

Chowla [1] gave the asymptotic value $\left(\pi^{2} p\right) / 12$ for the left hand side of (1) and noted that the asymptotic form of (1) was implicit in the work of Paley [2] and Selberg [3].

If $F(t)$ is the fractional part of t minus $1 / 2$ and $e(t)=e^{2 \pi i t}$, then

$$
\begin{equation*}
F(t)=-\frac{1}{2 \pi i} \sum_{n} \frac{e(n t)}{n} \tag{2}
\end{equation*}
$$

where n runs over all non zero integers. Let ψ be a non-principal character $\bmod p$. From (2),

$$
\sum_{r=1}^{p-1} \psi(r) F\left(\frac{r}{p}\right)=-\frac{1}{2 \pi i} \sum_{n} \frac{1}{n} \sum_{r=1}^{p-1} \psi(r) e\left(\frac{r n}{p}\right) .
$$

Since

$$
\sum_{r=1}^{p-1} \psi(r) e\left(\frac{r n}{p}\right)=\tau(\psi) \psi(n)
$$

we have

$$
\sum_{r=1}^{p-1} \Psi(r) F\left(\frac{r}{p}\right)=-\frac{\tau(\psi)}{2 \pi i} \begin{cases}2 L(1, \psi) & \text { if } \psi(-1)=-1 \tag{3}\\ 0 & \text { if } \psi(-1)=1\end{cases}
$$

even when ψ is principal, as an easy computation shows. Thus,

$$
\sum_{r, t=1}^{p-1} F\left(\frac{r}{p}\right) F\left(\frac{t}{p}\right) \psi(r) \psi(t)= \begin{cases}\frac{p}{\pi^{2}}|L(1, \psi)|^{2} & \text { if } \psi(-1)=-1 \\ 0 & \text { if } \psi(-1)=1\end{cases}
$$

[^0]
[^0]: Received January 2, 1980.

