AN INEQUALITY BETWEEN THE VOLUME AND THE CONVEXITY RADIUS OF A RIEMANNIAN MANIFOLD

BY

James J. Hebda

1. In [2], Marcel Berger is interested in finding lower bounds on the volume $v(g)$ of a compact n-dimensional Riemannian manifold (M, g) in terms of the injectivity radius $i(g)$ and convexity radius $c(g)$. Recently, Berger [3] proved that

$$
v(g) \geq\left(\alpha(n) / \pi^{n}\right) i^{n}(g)
$$

and consequently that

$$
v(g) \geq\left(\alpha(n) /(\pi / 2)^{n}\right) c^{n}(g)
$$

with equality holding if and only if (M, g) is a sphere of constant curvature. (Here $\alpha(n)$ is the volume of the unit n-sphere.) It is reasonable to expect that stronger inequalities hold when M is not homeomorphic to a sphere.

In this paper we exhibit a constant $\mu^{\prime}(3)>\alpha(3) /(\pi / 2)^{3}$ such that for any non-simply-connected 3-dimensional manifold (M, g), $v(g) \geq \mu^{\prime}(3) c^{3}(g)$. Along the way we refine Loewner's theorem [8], [1] thereby giving a lower bound on the area of a torus or Klein bottle in terms of the two shortest nonhomotopically trivial closed curves.
Throughout this paper, let ρ be the distance function associated to the Riemannian manifold (M, g). The open geodesic ball of radius $r>0$ centered at the point $p \in M$ is defined by

$$
B(p ; r)=\{q \in M: \rho(p, q)<r\} .
$$

Thus, if $0<r \leq i(g)$, then the exponential map is a diffeomorphism of the open ball of radius r centered at the origin in the tangent space at p onto $B(p ; r)$. Also, if $0<r \leq c(g)$, then $B(p ; r)$ is strongly convex, meaning that any two points of $B(p ; r)$ are connected by a unique minimizing geodesic and this geodesic lies in $B(p ; r)$. We will frequently use the relation $2 c(g) \leq i(g)$ (Remark 1.6 of [2]).
2. Let (M, g) be a compact non-simply-connected Riemannian manifold. Let $l(g)$ denote the length of the shortest nonhomotopically-trivial closed curve. Clearly, $\quad l(g) \geq 2 i(g) \geq 4 c(g)$. Let γ be a shortest non-

