ADDENDUM TO MY PAPER "ON COLORING MANIFOLDS"

BY

K. S. Sarkaria

An important paper by Grünbaum [1], which had escaped my attention until now, contains the following theorem: If $m \geqslant 2$ then one can assign $6(m-1)$ colors to the ($m-2$)-simplices of any simplicial complex imbedded in \mathbf{R}^{m} in such a way that any two ($m-2$)-simplices incident to the same ($m-1$)-simplex have different colors. A fortiori, this implies the finiteness of the numbers $\mathrm{ch}_{m-2}\left(S^{m}\right)$ of [2].

It is easily seen that Theorems 1 and 2 of [2] are equivalent to the following.

Theorem A. If X is any closed m-dimensional pseudomanifold ($m \geqslant$ 2), then

$$
\operatorname{ch}_{m-2}(X) \leqslant\left\{\frac{m(m+1)}{m-1}\left[1+b_{m-1}\left(X ; \mathbf{Z}_{2}\right)\right]\right\} .
$$

Further if K is any subcomplex of a triangulation of X and contains at least one ($m-2$)-simplex, then

$$
\frac{m-1}{m+1} \alpha_{m-1}(K) \leqslant \alpha_{m-2}(K)+b_{m-1}\left(X ; \mathbf{Z}_{2}\right)-1 .
$$

We will now use the ideas of Grünbaum [1] to show that this theorem can be significantly improved when the hypotheses are strengthened somewhat.

Theorem B. If X is any closed triangulable manifold ($m \geqslant 3$), then $\mathrm{ch}_{m-2}(X) \leqslant 6$. Further if K is any subcomplex of a triangulation of X and contains at least one ($m-2$)-simplex, then $m \alpha_{m-1}(K)<6 \alpha_{m-2}(K)$.

Proof. The first part will follow from the second (as in the proof of Theorem 2 of [2], for example). Let K be a subcomplex of a triangulation L of X and let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{t}$ be the ($m-3$)-simplices of K which are incident to at least one ($m-2$)-simplex of K. Since X is an m-manifold ($m \geqslant 3$), $L k_{1} \sigma_{i}, 1 \leqslant i \leqslant t$, is a triangulation of the 2 -sphere S^{2}. Further $L k_{K} \sigma_{i}, 1 \leqslant i \leqslant t$, is a subcomplex of $L k_{L} \sigma_{i}$ and contains at least one vertex.

[^0]
[^0]: Received September 9, 1981.

