ADDENDUM TO MY PAPER "ON COLORING MANIFOLDS"

BY

K. S. SARKARIA

An important paper by Grünbaum [1], which had escaped my attention until now, contains the following theorem: If $m \ge 2$ then one can assign 6(m - 1) colors to the (m - 2)-simplices of any simplicial complex imbedded in \mathbb{R}^m in such a way that any two (m - 2)-simplices incident to the same (m - 1)-simplex have different colors. A fortiori, this implies the finiteness of the numbers $ch_{m-2}(S^m)$ of [2].

It is easily seen that Theorems 1 and 2 of [2] are equivalent to the following.

THEOREM A. If X is any closed m-dimensional pseudomanifold ($m \ge 2$), then

$$\operatorname{ch}_{m-2}(X) \leq \left\{ \frac{m(m+1)}{m-1} [1 + b_{m-1}(X; \mathbf{Z}_2)] \right\}.$$

Further if K is any subcomplex of a triangulation of X and contains at least one (m - 2)-simplex, then

$$\frac{m-1}{m+1}\alpha_{m-1}(K) \leq \alpha_{m-2}(K) + b_{m-1}(X; \mathbb{Z}_2) - 1.$$

We will now use the ideas of Grünbaum [1] to show that this theorem can be significantly improved when the hypotheses are strengthened somewhat.

THEOREM B. If X is any closed triangulable manifold $(m \ge 3)$, then $ch_{m-2}(X) \le 6$. Further if K is any subcomplex of a triangulation of X and contains at least one (m - 2)-simplex, then $m\alpha_{m-1}(K) < 6\alpha_{m-2}(K)$.

Proof. The first part will follow from the second (as in the proof of Theorem 2 of [2], for example). Let K be a subcomplex of a triangulation L of X and let $\sigma_1, \sigma_2, ..., \sigma_t$ be the (m - 3)-simplices of K which are incident to at least one (m - 2)-simplex of K. Since X is an m-manifold $(m \ge 3)$, $Lk_1\sigma_i$, $1 \le i \le t$, is a triangulation of the 2-sphere S^2 . Further $Lk_K\sigma_i$, $1 \le i \le t$, is a subcomplex of $Lk_L\sigma_i$ and contains at least one vertex.

 $\ensuremath{\mathbb{C}}$ 1983 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received September 9, 1981.