ON THE HOMOTOPY TYPE OF DIFFEOMORPHISM GROUPS¹

BY

WILLIAM G. DWYER AND ROBERT H. SZCZARBA

Introduction

Let M be a closed smooth manifold and $Diff_0(M)$ the identity component of the group of C^{∞} diffeomorphisms of M. We are concerned here with the way in which the homotopy type of $Diff_0(M)$ depends on the smooth structure of M. Our principal result along these lines states that, if M_1 and M_2 are homeomorphic smooth manifolds, then, for suitable subrings Λ of the rationals Q (obtained from the integers Z by inverting a finite set of primes), $Diff_0(M_1)$ and $Diff_0(M_2)$ have the same Λ -homotopy type. (Recall that two nilpotent spaces X and Y are said to have the same Λ -homotopy type if there is a space W and mappings $X \to W$ and $Y \to W$ inducing isomorphisms

$$\pi_a(X)\otimes\Lambda\simeq\pi_a(W)\otimes\Lambda,\qquad\pi_a(Y)\otimes\Lambda\simeq\pi_a(W)\otimes\Lambda$$

for all $q \ge 0$. See [1].) In particular, we define an integer $\nu = \nu(M_1, M_2)$ in Section 1 depending only on bundle data associated to M_1 and M_2 such that the following holds:

THEOREM. Let M_1 and M_2 be homeomorphic smooth n-manifolds, $n \neq 4$, and let Λ be the subring of Q obtained from Z by inverting $\nu(M_1, M_2)$. Then $\text{Diff}_0(M_1)$ and $\text{Diff}_0(M_2)$ have the same Λ -homotopy type.

We prove an analogous result for the (simplicial) group PL(M) of PLhomeomorphisms of a PL-manifold (Theorem 1.3). We also prove a similar result regarding the discrete group homology (with coefficients in Λ) of $Diff_0(M_1)$ and $Diff_0(M_2)$ (Theorem 1.2).

Another type of result that we investigate involves the mapping of the diffeomorphism group of a smooth manifold onto its frame bundle. Let M be a smooth closed *n*-manifold and let P(M) be the frame bundle of M; that is, the principal GL(n, R) bundle associated with the tangent bundle of M. Then $Diff_0(M)$ acts on P(M) and we can define a mapping $\sigma:Diff_0(M)$

Received August 18, 1981.

© 1983 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

¹ Both authors were partially supported during the preparation of this paper by a National Science Foundation grant.