A DEFECT RELATION FOR LINEAR SYSTEMS ON COMPACT COMPLEX MANIFOLDS¹

BY

ALDO BIANCOFIORE

Introduction

In 1979 Shiffman ([7]) conjectured that if $f: \mathbb{C}^m \to \mathbb{P}_n$ is a non-constant meromorphic map and if D_1, \ldots, D_q are distinct hypersurfaces of degree d in \mathbb{P}_n such that no point is contained in the support of n + 1 distinct D_j and $f(\mathbb{C}^m) \not\equiv \text{supp } D_j$ for all j, then

(1)
$$\sum_{j=1}^{q} \delta_{f}(D_{j}) \leq 2n,$$

where δ_f denotes the Nevanlinna defect. To support his conjecture Shiffman proved (1) for a class of meromorphic maps of finite order.

To extend the class that satisfies (1) we use the method of associate maps which was introduced in 1941 by Ahlfors [1], generalized and developed by Weyl [11], Stoll [8], Cowen-Griffiths [4] and Wong [12]. Namely, (1) holds either if $f(\mathbb{C}^m)$ is contained in a line of \mathbf{P}_n or is a projection of a "special exponential map", i.e., an exponential map satisfying (6.1) (see Section 6). More in general we introduce an auxiliary defect τ_f , which we express explicitly and for all meromorphic maps $f: \mathbb{C}^m \to \mathbb{P}_n$ we prove

(2)
$$\sum_{j=1}^{q} \delta_{f}(D_{j}) \leq n(1+\tau_{f}).$$

Therefore in order to prove (1) for all meromorphic maps it would be sufficient to prove $\tau_f \leq 1$.

To add generality we prove (2) for meromorphic maps $f: \mathbb{C}^m \to X$, where X is a compact complex *n*-dimensional manifold and for $D_1, \ldots, D_q \in |L|$, where L is a spanned line bundle.

Received March 22, 1982.

¹ This research was partially supported by a grant of the Consiglio Nazionale delle Ricerche (Italy).

^{© 1984} by the Board of Trustees of the University of Illinois Manufactured in the United States of America