LINEAR TOPOLOGICAL PROPERTIES OF THE HARMONIC HARDY SPACES h^p FOR 0

BY

JOEL H. SHAPIRO¹

Dedicated to the memory of David L. Williams

1. Introduction

Let Δ denote the open unit disc of the complex plane. In this paper we study, for $0 , the space <math>h^p$ of complex valued functions u harmonic on Δ , for which

(1)
$$||u||_p^p = \sup_{0 \le r < 1} \int_{-\pi}^{\pi} |u(re^{i\theta})|^p d\theta/2\pi < \infty.$$

If $p \ge 1$ then the functional $\|\cdot\|_p$ is a norm which makes h^p into a Banach space. But if 0 it is instead the*p* $-norm <math>\|\cdot\|_p^p$ which is subadditive, and used to induce the translation-invariant metric. In either case metric convergence implies uniform convergence on compact subsets of Δ , so even if $0 , the space <math>h^p$ is complete, has enough continuous linear functionals to separate points; and its topology is "natural" for harmonic functions.

For $p \ge 1$ the h^p spaces are well known objects with many desirable properties. For example [5; Chapters 2, 3, and 4]:

(i) The Poisson integral establishes an isometric isomorphism between h^p and a classical Banach space: $L^p(\partial \Delta)$ if p > 1, and the space of complex Borel measures on $\partial \Delta$ if p = 1.

(ii) Each function in h^1 has a finite non-tangential limit at almost every point of $\partial \Delta$.

(iii) The conjugate function operator $u \to \tilde{u}$ is well behaved. If $1 , the M. Riesz theorem asserts that <math>h^p$ is "self-conjugate", that is, if u is in h^p , then so is its harmonic conjugate \tilde{u} . This is not true for h^1 , but here Kolmogorov's theorem provides a substitute: if $u \in h^1$ then $\tilde{u} \in h^p$ for all p < 1.

Received February 28, 1983.

¹Research supported in part by the National Science Foundation.

© 1985 by the Board of Trustees of the University of Illinois Manufactured in the United States of America