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1. Introduction

Let A denote the open unit disc of the complex plane. In this paper we
study, for 0 < p < 1, the space h p of complex valued functions u harmonic on
A, for which

(1) Ilull sup
0<r<l

f’lu(re*e)l dO/2r < oe.

If p > 1 then the functional II lip is a norm which makes h p into a Banach
space. But if 0 < p < 1 it is instead the p-norm II Ilee which is subadditive,
and used to induce the translation-invariant metric. In either case metric
convergence implies uniform convergence on compact subsets of A, so even if
0 < p < 1, the space h P is complete, has enough continuous linear functionals
to separate points; and its topology is "natural" for harmonic functions.
For p > 1 the h p spaces are well known objects with many desirable

properties. For example [5; Chapters 2, 3, and 4]:
(i) The Poisson integral establishes an isometric isomorphism between h p

and a classical Banach space: LP(OA) if p > 1, and the space of complex
Borel measures on 0A if p 1.

(ii) Each function in h has a finite non-tangential limit at almost every
point of 0A.

(iii) The conjugate function operator u is well behaved. If 1 < p < ,
the M. Riesz theorem asserts that h p is "self-conjugate", that is, if u is in h P,
then so is its harmonic conjugate . This is not true for h1, but here
Kolmogorov’s theorem provides a substitute: if u h then h p for all
p<l.
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