GOLOMB'S SELF-DESCRIBED SEQUENCE AND FUNCTIONAL DIFFERENTIAL EQUATIONS

Y.-F.S. PÉTERMANN and JEAN-LUC RÉMY

A sequence (word) W of positive integers is self-described or self-generating if $\tau(W)=W$, where $\tau(W)$ is the sequence consisting of the numbers of consecutive equal entries of W. A famous self-generating bounded sequence is Kolakoski's $\underbrace{1,}_{1 .} \underbrace{2,2,}_{2 .}, \underbrace{1,1}_{2 .}, \underbrace{2,}_{1 .} \underbrace{1,}_{1 .} \underbrace{2,2,}_{2,} \cdots$ (see [Ch]). In this paper we consider Golomb's sequence F, which is the only nondecreasing self-generating sequence taking all positive integral values, $\underbrace{1,}_{1 .} \underbrace{2,2,}_{2 .} \underbrace{3,3}_{2 .}, \underbrace{4,4,4}_{3 .} \underbrace{5,5,5,}_{3,} \underbrace{6,6,6,6}_{4 .} \cdots$. Let ϕ denote the golden number. We prove that

$$
F(n)=\phi^{2-\phi} n^{\phi-1}+\frac{n^{\phi-1}}{\log n} h\left(\frac{\log \log n}{\log \phi}\right)+O\left(\frac{n^{\phi-1}}{\log ^{2} n} \log \log n\right),
$$

where the real function h is continuous and satisfies $h(x)=-h(x+1)(x \geq 0)$. The method of proof is intimately connected with the more general problem of characterising the solution E_{1} of an approximate functional integral equation of the type

$$
E_{1}(t)=-\phi^{1-\phi} t^{\phi-2} \int_{2}^{\phi^{2-\phi} \phi-1} E_{1}(u) d u+O\left(\frac{t^{\phi-1}}{\log ^{2} t}\right)
$$

which we discuss in the second part of the paper.

1. Introduction

In the problem section of the American Mathematical Monthly in 1966, S.W. Golomb [Go] considered the unique nondecreasing sequence $\{F(n)\}_{n \geq 1}=$ $\{1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7 \ldots\}$ "self-described" by the two conditions $F(1)=1$ and $F(n)=|\{m: F(m)=n\}|(n \geq 1)$. At the time he only requested an asymptotic expression for $F(n)$ as $n \rightarrow \infty$. We have

$$
\begin{equation*}
F(n)=c n^{\phi-1}+E(n) \tag{1.1}
\end{equation*}
$$

1991 Mathematics Subject Classification. Primary 11B83; Secondary 11B37, 11N37, 34K15.

