REAL PARTS OF NORMAL EXTENSIONS OF SUBNORMAL OPERATORS¹

BY

C.R. PUTNAM

1. Introduction and main theorem

A bounded linear operator S on a separable Hilbert space H is said to be subnormal if S has a normal extension N to a Hilbert space $K \supset H$. In case S has no normal part then S is said to be a pure subnormal operator. Further, Nis called the (essentially unique) minimal normal extension if the only reducing space of N which contains H is K. (For the basic properties of subnormal operators, see Halmos [3], Chapter 21, and for a detailed exposition of the subject, see Conway [2].) Since H is invariant under N then $H^{\perp} = K \ominus H$ is invariant under N*. As in Conway [1], the operator $T = N^* | H^{\perp}$, is called the dual of S = N|H. Further, one can express N and N* as operator matrices

(1.1)
$$N = \begin{bmatrix} S & X \\ 0 & T^* \end{bmatrix}$$
 and $N^* = \begin{bmatrix} S^* & 0 \\ X^* & T \end{bmatrix}$ on $K = H \oplus H^{\perp}$.

In Olin [6], p. 228, it is shown that since S is pure with minimal normal extension N then T is also pure with minimal normal extension N^* . Further ([1], p. 196), T is the dual of S with spectrum $\sigma(T) = \{\bar{z} : z \in \sigma(S)\}$. Simple calculations with the matrices of (1.1) show that

(1.2)
$$S * S - SS * = XX^*, T * T - TT^* = X^*X$$

and

(1.3)
$$\operatorname{Re}(N) = \frac{1}{2}(N+N^*) = \begin{bmatrix} \operatorname{Re}(S) & \frac{1}{2}X \\ \frac{1}{2}X^* & \operatorname{Re}(T) \end{bmatrix}$$
 on $K = H \oplus H^{\perp}$.

Since S and T are pure subnormal (hence also hyponormal) operators, both $\operatorname{Re}(S)$ and $\operatorname{Re}(T)$ are absolutely continuous operators on H and H^{\perp} , respectively; Putnam [8], pp. 42-43.

© 1987 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received May 15, 1985. ¹This work was supported by a National Science Foundation research grant.