TANGENTIAL LIMITS OF BLASCHKE PRODUCTS AND FUNCTIONS OF BOUNDED MEAN OSCILLATION

BY

ROBERT D. BERMAN AND WILLIAM S. COHN*

1. Introduction

Let Δ and C denote the disk $\{|z| < 1\}$ and its boundary $\{|z| = 1\}$. For $\{a_k\}$ a sequence in Δ satisfying the Blaschke condition $\Sigma(1 - |a_k|) < \infty$, let $B(z) = B(z, \{a_k\})$ denote the Blaschke product

$$\prod \frac{\bar{a}_k}{|a_k|} \frac{a_k - z}{1 - \bar{a}_k z}, \quad z \in \Delta,$$

where we set $\bar{a}_k/|a_k| = -1$ if $a_k = 0$. Let H^p , $0 , denote the usual Hardy classes of analytic functions on <math>\Delta$, and let BMOA be the space of analytic functions on Δ having bounded mean oscillation. Corresponding to each Blaschke product B(z), let

$$K_*(B) = K_2(B) \cap BMOA,$$

where

$$K_2(B) = H^2 \bigcirc BH^2$$

is the orthogonal complement in H^2 of the invariant subspace BH^2 . Recall that every function in H^p , $0 , has finite nontangential limits defined almost everywhere (a.e.) with respect to linear Lebesgue measure <math>(d\theta)$ in C. Also, every Blaschke product is contained in H^∞ and has nontangential limits of modulus 1 a.e. $[d\theta]$, and $H^\infty \subsetneq BMOA \subsetneq \bigcap_{0 . (See [7] and [9] for background concerning the spaces of functions defined above.)$

In this paper we give conditions on the zero sequence $\{a_k\}$ of the Blaschke product $B(z, \{a_k\})$ which insure the existence of certain nontangential and tangential limits for every one of its subproducts and for the functions in the class $K_*(B)$. The following notation will be used to state our main results and

Received April 18, 1985.

^{© 1987} by the Board of Trustees of the University of Illinois Manufactured in the United States of America