CONVERGENCE RATES FOR FUNCTION CLASSES WITH APPLICATIONS TO THE EMPIRICAL CHARACTERISTIC FUNCTION

BY

J.E. YUKICH

1. Introduction

Let (S, \mathcal{S}, P) be a probability space and let $X_i, i \ge 1$, be independent, identically distributed (i.i.d.) S-valued random variables with common law P. We shall consider the $X_i, i \ge 1$, to be the coordinates for a countable product $(S^N, \mathcal{S}^N, P^N)$ of copies of (S, \mathcal{S}, P) . Let the *n*th empirical measure for P be defined by

$$P_n \coloneqq n^{-1} (\delta_{X_1} + \cdots + \delta_{X_n}),$$

where δ_x is the unit mass at $x \in S$.

Recent research has yielded new limit theorems for the empirical process

$$\left\{\int f(dP_n-dP): f\in\mathscr{F}\right\},\$$

where \mathscr{F} is a class of measurable functions on S. We refer the reader to [5], [7], [10], [11], [22], [25] where attention is focused on the empirical process indexed by a single class of functions \mathscr{F} . Related research has concentrated on the empirical process indexed by a sequence of classes of functions, say \mathscr{G}_n , $n \ge 1$. For example, see [14], [21], [28], [31].

In recent work [31], the author has used randomization techniques and metric entropy methods to study the limit behavior of

(1.1)
$$\left\{ \int g(dP_n - dP) : g \in \mathscr{G}_n \right\}$$

where \mathscr{G}_n , $n \ge 1$, is a sequence of function classes on (S, \mathscr{S}, P) . Under weak metric entropy and growth conditions on \mathscr{G}_n , $n \ge 1$, it is shown in [31], that

Received July 18, 1986.

^{© 1988} by the Board of Trustees of the University of Illinois Manufactured in the United States of America