MOODY'S INDUCTION THEOREM¹

BY

GERALD CLIFF AND ALFRED WEISS

Dedicated to the Memory of Irving Reiner

1. Introduction

Our purpose is to give a proof of the recent remarkable induction theorem of John Moody [1], a proof that is straightforward and more or less self contained. Let Γ be a finitely generated abelian by finite group, and let $S*\Gamma$ be a crossed product of a left noetherian ring S with Γ . Let $G_0(S*\Gamma)$ denote the Grothendieck group of the category of all finitely generated $S*\Gamma$ -modules. For any subgroup F of Γ , there is a map $G_0(S*F) \to G_0(S*\Gamma)$ given by sending the class [M] of an S*F-module M to the class $[S*\Gamma\otimes_{S*F}M]$ of the induced module.

Moody's Theorem. Let α be the sum of the maps from $\Sigma G_0(S*F)$ to $G_0(S*\Gamma)$, where F varies over all finite subgroups of Γ . Then α is surjective.

As an application to G_0 of group rings, let H be a polycyclic by finite group, and let k be a noetherian ring.

Moody's Theorem for Polycyclic by Finite Groups. The map from $\Sigma G_0(kF)$ to $G_0(kH)$, given by the sum of inductions from finite subgroups F of H, is surjective.

To prove this, let H_1 be a normal subgroup of H of smaller Hirsch length than H, such that $H/H_1 = \Gamma$ is abelian by finite, and write the group ring kH as a crossed product $(kH_1)*(H/H_1)$. Then use induction on the Hirsch length.

Here is an outline of our proof of Moody's Theorem. Let A be a finitely generated free abelian normal subgroup of Γ of finite index, and let G denote

© 1988 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received September 2, 1987.

¹Research supported in part by NSERC of Canada.