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1. Introduction

Our purpose is to give a proof of the recent remarkable induction theorem
of John Moody [1], a proof that is straightforward and more or less self
contained. Let I" be a finitely generated abelian by finite group, and let S, I"
be a crossed product of a left noetherian ring S with F. Let Go(S I’) denote
the Grothendieck group of the category of all finitely generated S, F-mod-
ules. For any subgroup F of F, there is a map Go(S, F) Go(S, F) given
by sending the class [M] of an S, F-module M to the class [S, F (R)s, F M]
of the induced module.

MOODY’S THEOREM. Let a be the sum of the maps from FGo(S, F) to

G0(S F), where F varies over all finite subgroups of F. Then a is surjective.

As an application to Go of group rings, let H be a polycyclic by finite
group, and let k be a noetherian ring.

MOODY’S THEOREM FOR POLYCYCLIC BY FINITE GROUPS. The map from
EGo(kF) to Go(kH), given by the sum of inductions from finite subgroups F of
H, is surjective.

To prove this, let H be a normal subgroup of H of smaller Hirsch length
than H, such that H/HI F is abelian by finite, and write the group ring kH
as a crossed product (kH), (H/Hx). Then use induction on the Hirsch length.

Here is an outline of our proof of Moody’s Theorem. Let A be a finitely
generated free abelian normal subgroup of F of finite index, and let G denote
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