A FINITENESS THEOREM FOR THE SPECTRAL SEQUENCE OF A RIEMANNIAN FOLIATION

BY

Jesús A. Alvarez López

Introduction

Let M be a smooth closed manifold which carries a smooth foliation \mathscr{F} of dimension p and codimension q. A differential form ω of degree r is said to be of filtration $\geq k$ if it vanishes whenever r - k + 1 of the vectors are tangent to \mathscr{F} . In this way the deRham complex of the differential forms becomes a filtered differential algebra and we have the spectral sequence $(E_i(\mathscr{F}), d_i)$ which converges after a finite number of steps to the (finite dimensional) cohomology of M.

It is clear that $E_2^{0,0}(\mathscr{F})$, $E_2^{1,0}(\mathscr{F})$, $E_2^{q-1,p}(\mathscr{F})$ and $E_2^{q,p}(\mathscr{F})$ are of finite dimension but there are another vectorial spaces $E_2^{u,v}(\mathscr{F})$ that may be infinite-dimensional as shown in the examples of G.W. Schwarz [7].

In [6], K.S. Sarkaria proves that $E_2(\mathcal{F})$ is finite-dimensional when \mathcal{F} is transitive. He uses techniques of functional analysis (constructing a 2-parametrix).

In [2], A. El Kacimi-Alaoui, V. Sergiescu and G. Hector prove that the basic cohomology, [which is equal to $E_2^{,0}(\mathscr{F})$) is finite-dimensional. They prove it step to step for Lie foliations, transversely parallelizable foliations and Riemannian foliations.

This paper establishes the following improvement of the two results above.

THEOREM. If a smooth closed manifold M carries a Riemannian foliation \mathcal{F} then $E_2(\mathcal{F})$ is finite-dimensional.

To prove it we assume that \mathscr{F} is transversely oriented and construct an operation of a Lie algebra in $E_1(\mathscr{F})$, where \mathscr{F} is the horizontal lift of \mathscr{F} to the principal fiberbundle of oriented orthonormal frames with the transverse

Received January 9, 1987.

 $[\]ensuremath{\textcircled{@}}$ 1989 by the Board of Trustees of the University of Illinois Manufactured in the United States of America